Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Curr Osteoporos Rep ; 20(5): 334-343, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35829950

RESUMEN

PURPOSE OF REVIEW: The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal SSPCs (pSSPCs) during bone regeneration. RECENT FINDINGS: Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and transcriptomic analyses have improved our understanding of pSSPC functions during bone regeneration. Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone and cartilage. The injury response of pSSPCs is controlled by many signaling pathways including BMP, FGF, Notch, and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood vessels, and macrophages in the fracture environment. Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the fracture healing process and a prime target for clinical applications.


Asunto(s)
Regeneración Ósea , Periostio , Regeneración Ósea/fisiología , Cartílago , Curación de Fractura/fisiología , Humanos , Osteogénesis , Células Madre
2.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746344

RESUMEN

Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single cell transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis. Summary: Hachemi et al. report the immune cell atlas of bone repair revealing macrophages as pro-fibrotic regulators and a therapeutic target for musculoskeletal regeneration. Genetic depletion or pharmacological inhibition of macrophages improves bone healing in musculoskeletal trauma.

3.
Sci Transl Med ; 16(753): eadj1597, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924432

RESUMEN

Congenital pseudarthrosis of the tibia (CPT) is a severe pathology marked by spontaneous bone fractures that fail to heal, leading to fibrous nonunion. Half of patients with CPT are affected by the multisystemic genetic disorder neurofibromatosis type 1 (NF1) caused by mutations in the NF1 tumor suppressor gene, a negative regulator of RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Here, we analyzed patients with CPT and Prss56-Nf1 knockout mice to elucidate the pathogenic mechanisms of CPT-related fibrous nonunion and explored a pharmacological approach to treat CPT. We identified NF1-deficient Schwann cells and skeletal stem/progenitor cells (SSPCs) in pathological periosteum as affected cell types driving fibrosis. Whereas NF1-deficient SSPCs adopted a fibrotic fate, NF1-deficient Schwann cells produced critical paracrine factors including transforming growth factor-ß and induced fibrotic differentiation of wild-type SSPCs. To counteract the elevated RAS-MAPK signaling in both NF1-deficient Schwann cells and SSPCs, we used MAPK kinase (MEK) and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Combined MEK-SHP2 inhibition in vivo prevented fibrous nonunion in the Prss56-Nf1 knockout mouse model, providing a promising therapeutic strategy for the treatment of fibrous nonunion in CPT.


Asunto(s)
Ratones Noqueados , Neurofibromina 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Seudoartrosis , Células de Schwann , Animales , Femenino , Humanos , Masculino , Ratones , Diferenciación Celular/efectos de los fármacos , Fibrosis , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neurofibromatosis 1/patología , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/complicaciones , Neurofibromina 1/metabolismo , Neurofibromina 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Seudoartrosis/patología , Seudoartrosis/metabolismo , Seudoartrosis/congénito , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/patología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Tibia/patología
4.
J Bone Miner Res ; 37(8): 1545-1561, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35652423

RESUMEN

Bone regeneration involves skeletal stem/progenitor cells (SSPCs) recruited from bone marrow, periosteum, and adjacent skeletal muscle. To achieve bone reconstitution after injury, a coordinated cellular and molecular response is required from these cell populations. Here, we show that SSPCs from periosteum and skeletal muscle are enriched in osteochondral progenitors, and more efficiently contribute to endochondral ossification during fracture repair as compared to bone-marrow stromal cells. Single-cell RNA sequencing (RNAseq) analyses of periosteal cells reveal the cellular heterogeneity of periosteum at steady state and in response to bone fracture. Upon fracture, both periosteal and skeletal muscle SSPCs transition from a stem/progenitor to a fibrogenic state prior to chondrogenesis. This common activation pattern in periosteum and skeletal muscle SSPCs is mediated by bone morphogenetic protein (BMP) signaling. Functionally, Bmpr1a gene inactivation in platelet-derived growth factor receptor alpha (Pdgfra)-derived SSPCs impairs bone healing and decreases SSPC proliferation, migration, and osteochondral differentiation. These results uncover a coordinated molecular program driving SSPC activation in periosteum and skeletal muscle toward endochondral ossification during bone regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Fracturas Óseas , Periostio , Diferenciación Celular/fisiología , Condrogénesis , Fracturas Óseas/metabolismo , Humanos , Músculo Esquelético , Osteogénesis/fisiología , Periostio/metabolismo , Células Madre/metabolismo
5.
Methods Mol Biol ; 2230: 151-165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33197014

RESUMEN

Renal capsule transplantation is a very helpful method to grow embryonic tissues or tumors in a vascular environment, allowing for long-term engraftment and biological analyses. This chapter describes the surgical procedure for the transplantation of embryonic skeletal elements in the renal capsule of adult mice and points out the manipulations that can be applied for assaying the role of angiogenesis during bone development and repair.


Asunto(s)
Desarrollo Óseo/genética , Trasplante de Riñón/métodos , Morfogénesis/genética , Neovascularización Fisiológica/genética , Adventicia/crecimiento & desarrollo , Adventicia/patología , Animales , Epitelio/crecimiento & desarrollo , Epitelio/patología , Humanos , Riñón/crecimiento & desarrollo , Riñón/patología , Linfangiogénesis/genética , Vasos Linfáticos/citología , Ratones , Neovascularización Patológica/genética , Organogénesis/genética
6.
Bio Protoc ; 11(15): e4107, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34458401

RESUMEN

The periosteum covering the outer surface of bone contains skeletal stem/progenitor cells that can efficiently form cartilage and bone during bone repair. Several methods have been described to isolate periosteal cells based on bone scraping and/or enzymatic digestion. Here, we describe an explant culture method to isolate periosteum-derived stem/progenitor cells for subsequent in vitro and in vivo analyses. Periosteal cells (PCs) isolated using this protocol express mesenchymal markers, can be expanded in vitro, and exhibit high regenerative potential after in vivo transplantation at a fracture site, suggesting that this protocol can be employed for PC production to use in new cell-based therapies.

7.
Stem Cell Reports ; 15(4): 955-967, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32916123

RESUMEN

Most organs and tissues in the body, including bone, can repair after an injury due to the activation of endogenous adult stem/progenitor cells to replace the damaged tissue. Inherent dysfunctions of the endogenous stem/progenitor cells in skeletal repair disorders are still poorly understood. Here, we report that Fgfr3Y637C/+ over-activating mutation in Prx1-derived skeletal stem/progenitor cells leads to failure of fracture consolidation. We show that periosteal cells (PCs) carrying the Fgfr3Y637C/+ mutation can engage in osteogenic and chondrogenic lineages, but following transplantation do not undergo terminal chondrocyte hypertrophy and transformation into bone causing pseudarthrosis. Instead, Prx1Cre;Fgfr3Y637C/+ PCs give rise to fibrocartilage and fibrosis. Conversely, wild-type PCs transplanted at the fracture site of Prx1Cre;Fgfr3Y637C/+ mice allow hypertrophic cartilage transition to bone and permit fracture consolidation. The results thus highlight cartilage-to-bone transformation as a necessary step for bone repair and FGFR3 signaling within PCs as a key regulator of this transformation.


Asunto(s)
Regeneración Ósea , Huesos/patología , Cartílago/patología , Periostio/metabolismo , Seudoartrosis/patología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Callo Óseo/patología , Diferenciación Celular , Curación de Fractura , Proteínas de Homeodominio/metabolismo , Integrasas/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Tibia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA