Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39299233

RESUMEN

Pathogenic variants in RAD51C confer an elevated risk of breast and ovarian cancer, while individuals homozygous for specific RAD51C alleles may develop Fanconi anemia. Using saturation genome editing (SGE), we functionally assess 9,188 unique variants, including >99.5% of all possible coding sequence single-nucleotide alterations. By computing changes in variant abundance and Gaussian mixture modeling (GMM), we functionally classify 3,094 variants to be disruptive and use clinical truth sets to reveal an accuracy/concordance of variant classification >99.9%. Cell fitness was the primary assay readout allowing us to observe a phenomenon where specific missense variants exhibit distinct depletion kinetics potentially suggesting that they represent hypomorphic alleles. We further explored our exhaustive functional map, revealing critical residues on the RAD51C structure and resolving variants found in cancer-segregating kindred. Furthermore, through interrogation of UK Biobank and a large multi-center ovarian cancer cohort, we find significant associations between SGE-depleted variants and cancer diagnoses.

2.
Cell ; 187(16): 4176-4192.e17, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38959890

RESUMEN

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.


Asunto(s)
Depresión Posparto , Neuronas , Obesidad , Canales Catiónicos TRPC , Animales , Femenino , Ratones , Obesidad/metabolismo , Obesidad/genética , Masculino , Humanos , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Depresión Posparto/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratones Endogámicos C57BL , Oxitocina/metabolismo , Conducta Materna
3.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002796

RESUMEN

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Asunto(s)
Mutación con Ganancia de Función/genética , Obesidad/patología , Receptor de Melanocortina Tipo 4/genética , Transducción de Señal , Adulto , Anciano , Índice de Masa Corporal , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , AMP Cíclico/metabolismo , Bases de Datos Factuales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Polimorfismo de Nucleótido Simple , Receptor de Melanocortina Tipo 4/química , Receptor de Melanocortina Tipo 4/metabolismo , beta-Arrestinas/metabolismo
4.
Immunity ; 54(6): 1231-1244.e4, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33887202

RESUMEN

The conserved CD94/NKG2A inhibitory receptor is expressed by nearly all human and ∼50% of mouse uterine natural killer (uNK) cells. Binding human HLA-E and mouse Qa-1, NKG2A drives NK cell education, a process of unknown physiological importance influenced by HLA-B alleles. Here, we show that NKG2A genetic ablation in dams mated with wild-type males caused suboptimal maternal vascular responses in pregnancy, accompanied by perturbed placental gene expression, reduced fetal weight, greater rates of smaller fetuses with asymmetric growth, and abnormal brain development. These are features of the human syndrome pre-eclampsia. In a genome-wide association study of 7,219 pre-eclampsia cases, we found a 7% greater relative risk associated with the maternal HLA-B allele that does not favor NKG2A education. These results show that the maternal HLA-B→HLA-E→NKG2A pathway contributes to healthy pregnancy and may have repercussions on offspring health, thus establishing the physiological relevance for NK cell education. VIDEO ABSTRACT.


Asunto(s)
Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília D de Receptores Similares a Lectina de las Células NK/inmunología , Útero/inmunología , Animales , Femenino , Estudio de Asociación del Genoma Completo/métodos , Antígenos HLA/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Placenta/inmunología , Embarazo , Resultado del Embarazo
5.
Nature ; 633(8030): 608-614, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261734

RESUMEN

Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.


Asunto(s)
Envejecimiento , Predisposición Genética a la Enfermedad , Menarquia , Menopausia , Tasa de Mutación , Neoplasias , Ovario , Humanos , Femenino , Envejecimiento/genética , Ovario/metabolismo , Ovario/patología , Menopausia/genética , Predisposición Genética a la Enfermedad/genética , Neoplasias/genética , Masculino , Menarquia/genética , Persona de Mediana Edad , Reino Unido/epidemiología , Adulto , Anciano , Mutación de Línea Germinal/genética
6.
Nature ; 631(8019): 134-141, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38867047

RESUMEN

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Asunto(s)
Aneuploidia , Cromosomas Humanos X , Células Clonales , Leucocitos , Mosaicismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alelos , Enfermedades Autoinmunes/genética , Bancos de Muestras Biológicas , Segregación Cromosómica/genética , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Células Clonales/metabolismo , Células Clonales/patología , Exoma/genética , Proteínas F-Box/genética , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal , Leucemia/genética , Leucocitos/metabolismo , Modelos Genéticos , Herencia Multifactorial/genética , Mutación Missense/genética
7.
PLoS Biol ; 22(6): e3002641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833481

RESUMEN

In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos , Hipotálamo , MicroARNs , Obesidad Materna , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Neuronas/metabolismo , Obesidad/metabolismo , Obesidad/genética , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética
8.
J Med Genet ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209703

RESUMEN

BACKGROUND: Deleterious germline variants in ATM and CHEK2 have been associated with a moderately increased risk of breast cancer. Risks for other cancers remain unclear. METHODS: Cancer associations for coding variants in ATM and CHEK2 were evaluated using whole-exome sequence data from UK Biobank linked to cancer registration data (348 488 participants), and analysed both as a retrospective case-control and a prospective cohort study. Odds ratios, hazard ratios, and combined relative risks (RRs) were estimated by cancer type and gene. Separate analyses were performed for protein-truncating variants (PTVs) and rare missense variants (rMSVs; allele frequency <0.1%). RESULTS: PTVs in ATM were associated with increased risks of nine cancers at p<0.001 (pancreas, oesophagus, lung, melanoma, breast, ovary, prostate, bladder, lymphoid leukaemia (LL)), and three at p<0.05 (colon, diffuse non-Hodgkin's lymphoma (DNHL), rectosigmoid junction). Carriers of rMSVs had increased risks of four cancers (p<0.05: stomach, pancreas, prostate, Hodgkin's disease (HD)). RRs were highest for breast, prostate, and any cancer where rMSVs lay in the FAT or PIK domains, and had a Combined Annotation Dependent Depletion score in the highest quintile.PTVs in CHEK2 were associated with three cancers at p<0.001 (breast, prostate, HD) and six at p<0.05 (oesophagus, melanoma, ovary, kidney, DNHL, myeloid leukaemia). Carriers of rMSVs had increased risks of five cancers (p<0.001: breast, prostate, LL; p<0.05: melanoma, multiple myeloma). CONCLUSION: PTVs in ATM and CHEK2 are associated with a wide range of cancers, with the highest RR for pancreatic cancer in ATM PTV carriers. These findings can inform genetic counselling of carriers.

9.
PLoS Genet ; 18(6): e1010162, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653391

RESUMEN

Diet is considered as one of the most important modifiable factors influencing human health, but efforts to identify foods or dietary patterns associated with health outcomes often suffer from biases, confounding, and reverse causation. Applying Mendelian randomization in this context may provide evidence to strengthen causality in nutrition research. To this end, we first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank participants. We then converted these associations into direct genetic effects on food exposures by adjusting them for effects mediated via other traits. The SNPs which did not show evidence of mediation were then used for MR, assessing the association between genetically predicted food choices and other risk factors, health outcomes. We show that using all associated SNPs without omitting those which show evidence of mediation, leads to biases in downstream analyses (genetic correlations, causal inference), similar to those present in observational studies. However, MR analyses using SNPs which have only a direct effect on the exposure on food exposures provided unequivocal evidence of causal associations between specific eating patterns and obesity, blood lipid status, and several other risk factors and health outcomes.


Asunto(s)
Ingestión de Alimentos , Variación Genética , Causalidad , Humanos , Evaluación de Resultado en la Atención de Salud , Factores de Riesgo
10.
Int J Obes (Lond) ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174749

RESUMEN

BACKGROUND: Circulating insulin and insulin-like growth factor-1 (IGF-1) concentrations are positively correlated with adiposity. However, the causal effects of insulin and IGF-1 on adiposity are unclear. METHODS: We performed two-sample Mendelian randomization analyses to estimate the likely causal effects of fasting insulin and IGF-1 on relative childhood adiposity and adult body mass index (BMI). To improve accuracy and biological interpretation, we applied Steiger filtering (to avoid reverse causality) and 'biological effect' filtering of fasting insulin and IGF-1 associated variants. RESULTS: Fasting insulin-increasing alleles (35 variants also associated with higher fasting glucose, indicative of insulin resistance) were associated with lower relative childhood adiposity (P = 3.8 × 10-3) and lower adult BMI (P = 1.4 × 10-5). IGF-1-increasing alleles also associated with taller childhood height (351 variants indicative of greater IGF-1 bioaction) showed no association with relative childhood adiposity (P = 0.077) or adult BMI (P = 0.562). Conversely, IGF-1-increasing alleles also associated with shorter childhood height (306 variants indicative of IGF-1 resistance) were associated with lower relative childhood adiposity (P = 6.7 × 10-3), but effects on adult BMI were inconclusive. CONCLUSIONS: Genetic causal modelling indicates negative effects of insulin resistance on childhood and adult adiposity, and negative effects of IGF-1 resistance on childhood adiposity. Our findings demonstrate the need to distinguish between bioaction and resistance when modelling variants associated with biomarker concentrations.

11.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052102

RESUMEN

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Gemelación Dicigótica , Animales , Femenino , Humanos , Embarazo , Proteínas Portadoras/genética , Fertilidad/genética , Hormonas , Proteínas/genética , Estados Unidos , Pez Cebra/genética
12.
Genet Med ; 24(9): 1909-1919, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35687092

RESUMEN

PURPOSE: The study aimed to systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter syndrome [KS]) and 47,XYY, and characterize their risks of adverse health outcomes. METHODS: We analyzed genotyping array or exome sequence data in 207,067 men of European ancestry aged 40 to 70 years from the UK Biobank and related these to extensive routine health record data. RESULTS: Only 49 of 213 (23%) of men whom we identified with KS and only 1 of 143 (0.7%) with 47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We observed expected associations for KS with reproductive dysfunction (late puberty: risk ratio [RR] = 2.7; childlessness: RR = 4.2; testosterone concentration: RR = -3.8 nmol/L, all P < 2 × 10-8), whereas XYY men appeared to have normal reproductive function. Despite this difference, we identified several higher disease risks shared across both KS and 47,XYY, including type 2 diabetes (RR = 3.0 and 2.6, respectively), venous thrombosis (RR = 6.4 and 7.4, respectively), pulmonary embolism (RR = 3.3 and 3.7, respectively), and chronic obstructive pulmonary disease (RR = 4.4 and 4.6, respectively) (all P < 7 × 10-6). CONCLUSION: KS and 47,XYY were mostly unrecognized but conferred substantially higher risks for metabolic, vascular, and respiratory diseases, which were only partially explained by higher levels of body mass index, deprivation, and smoking.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome de Klinefelter , Bancos de Muestras Biológicas , Humanos , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/epidemiología , Síndrome de Klinefelter/genética , Masculino , Aberraciones Cromosómicas Sexuales , Reino Unido/epidemiología , Cariotipo XYY
13.
Nature ; 536(7614): 41-47, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27398621

RESUMEN

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Alelos , Análisis Mutacional de ADN , Europa (Continente)/etnología , Exoma , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Tamaño de la Muestra
14.
Cell Mol Life Sci ; 78(8): 4019-4033, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33837451

RESUMEN

Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer's disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a "genetic wasteland", and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Cromosomas Humanos Y , Mosaicismo , Neoplasias de la Próstata/genética , Linfocitos T CD4-Positivos/metabolismo , Regulación de la Expresión Génica , Humanos , Células Asesinas Naturales/metabolismo , Leucocitos/metabolismo , Masculino
16.
Nature ; 526(7571): 82-90, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26367797

RESUMEN

The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.


Asunto(s)
Enfermedad/genética , Variación Genética/genética , Genoma Humano/genética , Salud , Adiponectina/sangre , Alelos , Estudios de Cohortes , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Metabolismo de los Lípidos/genética , Masculino , Anotación de Secuencia Molecular , Receptores de LDL/genética , Estándares de Referencia , Análisis de Secuencia de ADN , Triglicéridos/sangre , Reino Unido
17.
Nature ; 523(7561): 459-462, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26131930

RESUMEN

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


Asunto(s)
Estatura/genética , Cognición , Homocigoto , Evolución Biológica , Presión Sanguínea/genética , LDL-Colesterol/genética , Estudios de Cohortes , Escolaridad , Femenino , Volumen Espiratorio Forzado/genética , Genoma Humano/genética , Humanos , Mediciones del Volumen Pulmonar , Masculino , Fenotipo
18.
PLoS Genet ; 14(12): e1007813, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30566500

RESUMEN

Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis. PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown. Previous studies in Chinese and European subjects have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of European ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci. Only one locus differed significantly in its association by diagnostic criteria; otherwise the genetic architecture was similar between PCOS diagnosed by self-report and PCOS diagnosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified variants were associated with hyperandrogenism, gonadotropin regulation and testosterone levels in affected women. Linkage disequilibrium score regression analysis revealed genetic correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery disease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian randomization analyses suggested variants associated with body mass index, fasting insulin, menopause timing, depression and male-pattern balding play a causal role in PCOS. The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architecture for all diagnostic criteria. The data also provide the first genetic evidence for a male phenotype for PCOS and a causal link to depression, a previously hypothesized comorbid disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses multiple diagnostic criteria, gender, reproductive potential and mental health.


Asunto(s)
Síndrome del Ovario Poliquístico/diagnóstico , Síndrome del Ovario Poliquístico/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Población Blanca/genética
19.
Hum Mol Genet ; 27(9): 1664-1674, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481666

RESUMEN

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.


Asunto(s)
Aminoácidos/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Finlandia , Frecuencia de los Genes/genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad
20.
PLoS Biol ; 15(9): e2002458, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28873088

RESUMEN

A number of open questions in human evolutionary genetics would become tractable if we were able to directly measure evolutionary fitness. As a step towards this goal, we developed a method to examine whether individual genetic variants, or sets of genetic variants, currently influence viability. The approach consists in testing whether the frequency of an allele varies across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across the genome, we found only a few common variants with large effects on age-specific mortality: tagging the APOE ε4 allele and near CHRNA3. These results suggest that when large, even late-onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of genetic variants that jointly influence 1 of 42 traits, we detected a number of strong signals. In participants of the UK Biobank of British ancestry, we found that variants that delay puberty timing are associated with a longer parental life span (P~6.2 × 10-6 for fathers and P~2.0 × 10-3 for mothers), consistent with epidemiological studies. Similarly, variants associated with later age at first birth are associated with a longer maternal life span (P~1.4 × 10-3). Signals are also observed for variants influencing cholesterol levels, risk of coronary artery disease (CAD), body mass index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and among participants of the UK Biobank of non-British ancestry. We also found marked differences between males and females, most notably at the CHRNA3 locus, and variants associated with risk of CAD and cholesterol levels. Beyond our findings, the analysis serves as a proof of principle for how upcoming biomedical data sets can be used to learn about selection effects in contemporary humans.


Asunto(s)
Evolución Molecular , Aptitud Genética , Genética de Población/métodos , Modelos Genéticos , Selección Genética , Estudios de Cohortes , Femenino , Frecuencia de los Genes , Variación Genética , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA