RESUMEN
The brain-vascular-immune interface has emerged as a dynamic player in brain physiology and disease. We propose integrating vascular risk factors with genetic susceptibility as the nexus for the discovery of mechanisms and therapies for neuroinflammation, neurodegeneration, and neurorepair across polygenic neurologic diseases.
Asunto(s)
Encéfalo , Humanos , Encéfalo/inmunología , Animales , Predisposición Genética a la Enfermedad , Enfermedades Neuroinflamatorias/inmunologíaRESUMEN
Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.
Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Perfilación de la Expresión Génica/métodos , Microglía/fisiología , Esclerosis Múltiple/genética , Inflamación Neurogénica/genética , Animales , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Redes Reguladoras de Genes , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunidad Innata , Isoxazoles/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Esclerosis Múltiple/tratamiento farmacológico , Inflamación Neurogénica/tratamiento farmacológico , Estrés Oxidativo , Análisis de Secuencia de ARN , Análisis de la Célula IndividualRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Fibrinógeno/antagonistas & inhibidores , Enfermedades Neurodegenerativas/inmunología , Animales , Epítopos , Humanos , Inflamación/inmunología , Ratones , RatasRESUMEN
Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.
Asunto(s)
Encéfalo , COVID-19 , Fibrina , Inflamación , Trombosis , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , COVID-19/complicaciones , Fibrina/antagonistas & inhibidores , Fibrina/metabolismo , Fibrinógeno/metabolismo , Inmunidad Innata , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Células Asesinas Naturales/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Activación de Macrófagos/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Enfermedades Neuroinflamatorias/complicaciones , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/virología , Neuronas/patología , Neuronas/virología , Estrés Oxidativo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Trombosis/complicaciones , Trombosis/inmunología , Trombosis/patología , Trombosis/virología , Síndrome Post Agudo de COVID-19/inmunología , Síndrome Post Agudo de COVID-19/virología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacologíaRESUMEN
Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.
Asunto(s)
Barrera Hematoencefálica , Cerebelo , Fibrinógeno , Proteínas Hedgehog , Transducción de Señal , Proteínas Hedgehog/metabolismo , Animales , Fibrinógeno/metabolismo , Cerebelo/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Humanos , Animales Recién Nacidos , Recién Nacido , Neurogénesis , Femenino , Masculino , Modelos Animales de EnfermedadRESUMEN
The blood coagulation protein fibrinogen is deposited in the brain in a wide range of neurological diseases and traumatic injuries with blood-brain barrier (BBB) disruption. Recent research has uncovered pleiotropic roles for fibrinogen in the activation of CNS inflammation, induction of scar formation in the brain, promotion of cognitive decline and inhibition of repair. Such diverse roles are possible in part because of the unique structure of fibrinogen, which contains multiple binding sites for cellular receptors and proteins expressed in the nervous system. The cellular and molecular mechanisms underlying the actions of fibrinogen are beginning to be elucidated, providing insight into its involvement in neurological diseases, such as multiple sclerosis, Alzheimer disease and traumatic CNS injury. Selective drug targeting to suppress the damaging functions of fibrinogen in the nervous system without affecting its beneficial effects in haemostasis opens a new fibrinogen therapeutics pipeline for neurological disease.
Asunto(s)
Fibrinógeno/metabolismo , Enfermedades del Sistema Nervioso , Neuroimagen , Animales , Humanos , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/terapiaRESUMEN
Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.
Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Receptores de Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Oligodendroglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Barrera Hematoencefálica/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ratones , Ratones Transgénicos , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Quinolinas/farmacología , Médula Espinal/metabolismoRESUMEN
BACKGROUND: Identifying preterm infants at risk for mortality or major morbidity traditionally relies on gestational age, birth weight, and other clinical characteristics that offer underwhelming utility. We sought to determine whether a newborn metabolic vulnerability profile at birth can be used to evaluate risk for neonatal mortality and major morbidity in preterm infants. METHODS: This was a population-based retrospective cohort study of preterm infants born between 2005 and 2011 in California. We created a newborn metabolic vulnerability profile wherein maternal/infant characteristics along with routine newborn screening metabolites were evaluated for their association with neonatal mortality or major morbidity. RESULTS: Nine thousand six hundred and thirty-nine (9.2%) preterm infants experienced mortality or at least one complication. Six characteristics and 19 metabolites were included in the final metabolic vulnerability model. The model demonstrated exceptional performance for the composite outcome of mortality or any major morbidity (AUC 0.923 (95% CI: 0.917-0.929). Performance was maintained across mortality and morbidity subgroups (AUCs 0.893-0.979). CONCLUSIONS: Metabolites measured as part of routine newborn screening can be used to create a metabolic vulnerability profile. These findings lay the foundation for targeted clinical monitoring and further investigation of biological pathways that may increase the risk of neonatal death or major complications in infants born preterm. IMPACT: We built a newborn metabolic vulnerability profile that could identify preterm infants at risk for major morbidity and mortality. Identifying high-risk infants by this method is novel to the field and outperforms models currently in use that rely primarily on infant characteristics. Utilizing the newborn metabolic vulnerability profile for precision clinical monitoring and targeted investigation of etiologic pathways could lead to reductions in the incidence and severity of major morbidities associated with preterm birth.
Asunto(s)
Mortalidad Infantil , Recien Nacido Prematuro , Morbilidad , Adulto , Femenino , Humanos , Lactante , Recién Nacido , Enfermedades del Prematuro/metabolismo , Enfermedades del Prematuro/mortalidad , Embarazo , Factores de Riesgo , Adulto JovenRESUMEN
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Although it has been extensively studied, the proximate trigger of the immune response remains uncertain. Experimental autoimmune encephalomyelitis in the common marmoset recapitulates many radiological and pathological features of focal multiple sclerosis lesions in the cerebral white matter, unlike traditional experimental autoimmune encephalomyelitis in rodents. This provides an opportunity to investigate how lesions form as well as the relative timing of factors involved in lesion pathogenesis, especially during early stages of the disease. We used MRI to track experimental autoimmune encephalomyelitis lesions in vivo to determine their age, stage of development, and location, and we assessed the corresponding histopathology post-mortem. We focused on the plasma protein fibrinogen-a marker for blood-brain barrier leakage that has also been linked to a pathogenic role in inflammatory demyelinating lesion development. We show that fibrinogen has a specific spatiotemporal deposition pattern, apparently deriving from the central vein in early experimental autoimmune encephalomyelitis lesions <6 weeks old, and preceding both demyelination and visible gadolinium enhancement on MRI. Thus, fibrinogen leakage is one of the earliest detectable events in lesion pathogenesis. In slightly older lesions, fibrinogen is found inside microglia/macrophages, suggesting rapid phagocytosis. Quantification demonstrates positive correlation of fibrinogen deposition with accumulation of inflammatory cells, including microglia/macrophages and T cells. The peak of fibrinogen deposition coincides with the onset of demyelination and axonal loss. In samples from chronic multiple sclerosis cases, fibrinogen was found at the edge of chronic active lesions, which have ongoing demyelination and inflammation, but not in inactive lesions, suggesting that fibrinogen may play a role in sustained inflammation even in the chronic setting. In summary, our data support the notion that fibrinogen is a key player in the early pathogenesis, as well as sustained inflammation, of inflammatory demyelinating lesions.
Asunto(s)
Encéfalo/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Fibrinógeno/metabolismo , Esclerosis Múltiple/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Axones/metabolismo , Axones/patología , Encéfalo/diagnóstico por imagen , Proteínas de Unión al Calcio , Callithrix , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/virología , Femenino , Regulación de la Expresión Génica/fisiología , Herpesviridae , Humanos , Filamentos Intermedios/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Proteínas de Microfilamentos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/virología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Factores de Transcripción/metabolismoRESUMEN
Although multiple sclerosis (MS) has been associated with the coagulation system, the temporal and spatial regulation of coagulation activity in neuroinflammatory lesions is unknown. Using a novel molecular probe, we characterized the activity pattern of thrombin, the central protease of the coagulation cascade, in experimental autoimmune encephalomyelitis. Thrombin activity preceded onset of neurological signs, increased at disease peak, and correlated with fibrin deposition, microglial activation, demyelination, axonal damage, and clinical severity. Mice with a genetic deficit in prothrombin confirmed the specificity of the thrombin probe. Thrombin activity might be exploited for developing sensitive probes for preclinical detection and monitoring of neuroinflammation and MS progression.
Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Trombina/metabolismo , Animales , Axones/patología , Factores de Coagulación Sanguínea/química , Conexina 30 , Conexinas/genética , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Fibrina/metabolismo , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/toxicidad , Poli I-C/toxicidad , Trombina/químicaRESUMEN
OBJECTIVES: To investigate racial/ethnic differences in rehospitalization and mortality rates among premature infants over the first year of life. STUDY DESIGN: A retrospective cohort study of infants born in California from 2011 to 2017 (n = 3,448,707) abstracted from a California Office of Statewide Health Planning and Development database. Unadjusted Kaplan-Meier tables and logistic regression controlling for health and sociodemographic characteristics were used to predict outcomes by race/ethnicity. RESULTS: Compared to White infants, Hispanic and Black early preterm infants were more likely to be readmitted; Black late/moderate preterm (LMPT) infants were more likely to be readmitted and to die after discharge; Hispanic and Black early preterm infants with BPD were more likely to be readmitted; Black LMPT infants with RDS were more likely to be readmitted and die after discharge. CONCLUSIONS: Racial/ethnic disparities in readmission and mortality rates exist for premature infants across several co-morbidities. Future studies are needed to improve equitability of outcomes.
Asunto(s)
Etnicidad , Recien Nacido Prematuro , California/epidemiología , Hispánicos o Latinos , Humanos , Lactante , Recién Nacido , Estudios Retrospectivos , Estados Unidos , Población BlancaRESUMEN
Microglial surveillance is a key feature of brain physiology and disease. Here, we found that Gi-dependent microglial dynamics prevent neuronal network hyperexcitability. By generating MgPTX mice to genetically inhibit Gi in microglia, we show that sustained reduction of microglia brain surveillance and directed process motility induced spontaneous seizures and increased hypersynchrony after physiologically evoked neuronal activity in awake adult mice. Thus, Gi-dependent microglia dynamics may prevent hyperexcitability in neurological diseases.
Asunto(s)
Quinasa 1 del Receptor Acoplado a Proteína-G/fisiología , Microglía/fisiología , Red Nerviosa/fisiología , Animales , Señalización del Calcio , Movimiento Celular , Convulsivantes , Electroencefalografía , Vigilancia Inmunológica , Ratones , Microglía/enzimología , Microglía/ultraestructura , Enfermedades del Sistema Nervioso/fisiopatología , Fenómenos Fisiológicos del Sistema Nervioso , Pilocarpina , Convulsiones/fisiopatología , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Blood-brain barrier (BBB) disruption alters the composition of the brain microenvironment by allowing blood proteins into the CNS. However, whether blood-derived molecules serve as extrinsic inhibitors of remyelination is unknown. Here we show that the coagulation factor fibrinogen activates the bone morphogenetic protein (BMP) signaling pathway in oligodendrocyte progenitor cells (OPCs) and suppresses remyelination. Fibrinogen induces phosphorylation of Smad 1/5/8 and inhibits OPC differentiation into myelinating oligodendrocytes (OLs) while promoting an astrocytic fate in vitro. Fibrinogen effects are rescued by BMP type I receptor inhibition using dorsomorphin homolog 1 (DMH1) or CRISPR/Cas9 activin A receptor type I (ACVR1) knockout in OPCs. Fibrinogen and the BMP target Id2 are increased in demyelinated multiple sclerosis (MS) lesions. Therapeutic depletion of fibrinogen decreases BMP signaling and enhances remyelination in vivo. Targeting fibrinogen may be an upstream therapeutic strategy to promote the regenerative potential of CNS progenitors in diseases with remyelination failure.
Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Fibrinógeno/farmacología , Células Precursoras de Oligodendrocitos/metabolismo , Remielinización/efectos de los fármacos , Receptores de Activinas Tipo I/efectos de los fármacos , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Fibrinógeno/antagonistas & inhibidores , Lisofosfatidilcolinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Plásmidos/genética , Transducción de Señal/efectos de los fármacosRESUMEN
Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood-brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b(+) antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity.
Asunto(s)
Autoinmunidad/inmunología , Encéfalo/inmunología , Enfermedades Desmielinizantes/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Fibrinógeno/inmunología , Genes MHC Clase II/inmunología , Macrófagos/inmunología , Médula Espinal/inmunología , Células TH1/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Autoinmunidad/efectos de los fármacos , Autoinmunidad/genética , Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Receptor 1 de Quimiocinas CX3C , Proliferación Celular , Quimiocina CCL2/inmunología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocinas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Enfermedades Desmielinizantes/genética , Fibrina , Fibrinógeno/farmacología , Citometría de Flujo , Perfilación de la Expresión Génica , Genes MHC Clase II/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Inmunohistoquímica , Ratones , Ratones Noqueados , Microglía , Glicoproteína Mielina-Oligodendrócito/inmunología , Ratas , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patologíaRESUMEN
Blood-brain barrier disruption, microglial activation and neurodegeneration are hallmarks of multiple sclerosis. However, the initial triggers that activate innate immune responses and their role in axonal damage remain unknown. Here we show that the blood protein fibrinogen induces rapid microglial responses toward the vasculature and is required for axonal damage in neuroinflammation. Using in vivo two-photon microscopy, we demonstrate that microglia form perivascular clusters before myelin loss or paralysis onset and that, of the plasma proteins, fibrinogen specifically induces rapid and sustained microglial responses in vivo. Fibrinogen leakage correlates with areas of axonal damage and induces reactive oxygen species release in microglia. Blocking fibrin formation with anticoagulant treatment or genetically eliminating the fibrinogen binding motif recognized by the microglial integrin receptor CD11b/CD18 inhibits perivascular microglial clustering and axonal damage. Thus, early and progressive perivascular microglial clustering triggered by fibrinogen leakage upon blood-brain barrier disruption contributes to axonal damage in neuroinflammatory disease.
Asunto(s)
Axones/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Fibrinógeno/fisiología , Microglía/patología , Animales , Axones/fisiología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Fibrina/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/patología , Médula Espinal/fisiopatologíaRESUMEN
We used two-channel three-dimensional time-lapse fluorescence confocal imaging in live rat hippocampal slice cultures (1-7 days in vitro) to determine the motility behaviors of activated microglia as they engage dead and dying cells following traumatic brain tissue injury. Live microglia were labeled with a fluorescently conjugated lectin (IB(4)), and dead neurons were labeled with a membrane-impermeant fluorescent DNA-binding dye (Sytox Orange or To-Pro-3). Tissue injury during the slicing procedure induced neuronal death and microglial activation, but the density of dead cells diminished approximately 10-fold by 7 days in vitro as resident microglia cleared dead cells. In time-lapse movies (4-20 h long), activated microglia exhibited varying levels of motile and locomotory activity. The motility of microglia could change abruptly following contact by other microglia or death of nearby cells. When neighboring cells died, some microglia rapidly moved toward or extended a process to engulf the dead cell, consistent with a chemotactic signaling response. Dead cell nuclei usually were engulfed and carried along by highly motile and locomoting microglia. The mean time to engulfment was approximately 5 times faster for newly deceased cells (33 min) than for extant dead cells (160 min), suggesting that the efficacy of microglial phagocytosis in situ might vary with time after cell death or mode of cell death. These observations demonstrate that activated microglia are heterogeneous with respect to motile activity following traumatic tissue injury and further indicate that cell motility in situ is temporally regulated at the single cell level, possibly by direct cell-cell contact and by diffusible substances emanating from nearby dead cells.