Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2211832120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577061

RESUMEN

Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/metabolismo , Cisteína , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Isoformas de Proteínas/metabolismo
2.
J Transl Med ; 22(1): 443, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730319

RESUMEN

BACKGROUND: The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. METHODS: Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. RESULTS: K17 expression had profound effects on the exclusion of intratumoral CD8+ T cells and was also associated with decreased numbers of peritumoral CD8+ T cells, CD16+ macrophages, and CD163+ macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8+ T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. CONCLUSIONS: Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.


Asunto(s)
Queratina-17 , Neoplasias Pancreáticas , Humanos , Queratina-17/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Femenino , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Masculino , Linfocitos T CD8-positivos/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Persona de Mediana Edad , Anciano , Receptores de Superficie Celular , Antígenos de Diferenciación Mielomonocítica , Antígenos CD
3.
Clin Proteomics ; 21(1): 24, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509475

RESUMEN

Metastatic pancreatic adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States, with a 5-year survival rate of only 11%, necessitating identification of novel treatment paradigms. Tumor tissue specimens from patients with PDAC, breast cancer, and other solid tumor malignancies were collected and tumor cells were enriched using laser microdissection (LMD). Reverse phase protein array (RPPA) analysis was performed on enriched tumor cell lysates to quantify a 32-protein/phosphoprotein biomarker panel comprising known anticancer drug targets and/or cancer-related total and phosphorylated proteins, including HER2Total, HER2Y1248, and HER3Y1289. RPPA analysis revealed significant levels of HER2Total in PDAC patients at abundances comparable to HER2-positive (IHC 3+) and HER2-low (IHC 1+ /2+ , FISH-) breast cancer tissues, for which HER2 screening is routinely performed. These data support a critical unmet need for routine clinical evaluation of HER2 expression in PDAC patients and examination of the utility of HER2-directed antibody-drug conjugates in these patients.

4.
Clin Proteomics ; 21(1): 4, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254014

RESUMEN

BACKGROUND: Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS: Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS: LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS: Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.

5.
Cell Commun Signal ; 22(1): 377, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061010

RESUMEN

BACKGROUND: Tumor heterogeneity is a main contributor of resistance to anti-cancer targeted agents though it has proven difficult to study. Unfortunately, model systems to functionally characterize and mechanistically study dynamic responses to treatment across coexisting subpopulations of cancer cells remain a missing need in oncology. METHODS: Using single cell cloning and expansion techniques, we established monoclonal cell subpopulations (MCPs) from a commercially available epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer cell line. We then used this model sensitivity to the EGFR inhibitor osimertinib across coexisting cell populations within the same tumor. Pathway-centered signaling dynamics associated with response to treatment and morphological characteristics of the MCPs were assessed using Reverse Phase Protein Microarray. Signaling nodes differentially activated in MCPs less sensitive to treatment were then pharmacologically inhibited to identify target signaling proteins putatively implicated in promoting drug resistance. RESULTS: MCPs demonstrated highly heterogeneous sensitivities to osimertinib. Cell viability after treatment increased > 20% compared to the parental line in selected MCPs, whereas viability decreased by 75% in other MCPs. Reduced treatment response was detected in MCPs with higher proliferation rates, EGFR L858R expression, activation of EGFR binding partners and downstream signaling molecules, and expression of epithelial-to-mesenchymal transition markers. Levels of activation of EGFR binding partners and MCPs' proliferation rates were also associated with response to c-MET and IGFR inhibitors. CONCLUSIONS: MCPs represent a suitable model system to characterize heterogeneous biomolecular behaviors in preclinical studies and identify and functionally test biological mechanisms associated with resistance to targeted therapeutics.


Asunto(s)
Compuestos de Anilina , Antineoplásicos , Resistencia a Antineoplásicos , Receptores ErbB , Transducción de Señal , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Receptores ErbB/metabolismo , Receptores ErbB/genética , Línea Celular Tumoral , Compuestos de Anilina/farmacología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Acrilamidas/farmacología , Supervivencia Celular/efectos de los fármacos , Indoles , Pirimidinas
6.
Oncologist ; 28(8): 730-736, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37255276

RESUMEN

Inflammatory myofibroblastic tumors (IMTs) are intermediate-grade mesenchymal neoplasms commonly characterized by chromosomal rearrangements causing constitutive activation of anaplastic lymphoma kinase (ALK) and/or ALK mutations causing reduced sensitivity to ALK tyrosine kinase inhibitors (TKI). We present a patient with an IMT who initially responded to first-line alectinib, but who later suffered disease relapse and presently survives with moderate residual disease after receiving second-line lorlatinib. Biopsy specimens were analyzed using next generation sequencing (DNA-seq and RNA-seq) and reverse phase protein microarray (RPPA) as part of an institutional Molecular Tumor Board (MTB) study. An EML4-ALK rearrangement and EGFR activation (pEGFRY1068) were present in both the primary and recurrent tumors, while a secondary ALK I1171N mutation was exclusive to the latter. EGFR signaling in the background of a secondary ALK mutation is correlated with reduced ALK TKI sensitivity in vitro, implicating an important mechanism of drug resistance development in this patient. The RPPA results also critically demonstrate that ALK signaling (ALKY1604) was not activated in the recurrent tumor, thereby indicating that standard-of-care use of third- or fourth-line ALK TKI would not likely be efficacious or durable. These results underscore the importance of real-time clinical integration of functional protein drug target activation data with NGS in the MTB setting for improving selection of patient-tailored therapy.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Multiómica , Resistencia a Antineoplásicos/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/uso terapéutico , Receptores ErbB/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(46): 29035-29045, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33144502

RESUMEN

Alphaviruses are positive-sense, enveloped RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV) is the prototype alphavirus and preferentially infects neurons in rodents to induce an encephalomyelitis similar to the human disease. Using a mouse model of SINV infection of the nervous system, many of the immune processes involved in recovery from viral encephalomyelitis have been identified. Antibody specific to the SINV E2 glycoprotein plays an important role in recovery and is sufficient for noncytolytic suppression of virus replication in vivo and in vitro. To investigate the mechanism of anti-E2 antibody-mediated viral suppression, a reverse-phase protein array was used to broadly survey cellular signaling pathway activation following antibody treatment of SINV-infected differentiated AP-7 neuronal cells. Anti-E2 antibody induced rapid transient NF-κB and later sustained Y705 STAT3 phosphorylation, outlining an intracellular signaling cascade activated by antiviral antibody. Because NF-κB target genes include the STAT3-activating IL-6 family cytokines, expression of these messenger RNAS (mRNAs) was assessed. Expression of leukemia inhibitory factor (LIF) cytokine mRNA, but not other IL-6 family member mRNAs, was up-regulated by anti-E2 antibody. LIF induced STAT3 Y705 phosphorylation in infected differentiated AP-7 cells but did not inhibit virus replication. However, anti-E2 antibody localized the LIF receptor to areas of E2 expression on the infected cell surface, and LIF enhanced the antiviral effects of antibody. These findings identify activation of the NF-κB/LIF/STAT3 signaling cascade as involved in inducing antibody-mediated viral suppression and highlight the importance of nonneutralizing antibody functions in viral clearance from neurons.


Asunto(s)
Factor Inhibidor de Leucemia/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Virus Sindbis/inmunología , Infecciones por Alphavirus/metabolismo , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Ratas , Proteínas del Envoltorio Viral , Replicación Viral
8.
J Biol Chem ; 297(5): 101335, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688654

RESUMEN

Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-ß1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mutación , Neoplasias Pancreáticas , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
9.
Med Chem Res ; 31(7): 1154-1175, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36389181

RESUMEN

Compound VBT-5445 was identified as an inhibitor to block the association of Pim and the protein Enhancer of Decapping 3 (EDC3), a Pim substrate, which normally functions to enhance the decapping of messenger RNA (mRNA). It was also shown to inhibit both the Pim and mTORC protein kinases. The activity of this compound class can be fine-tuned by structural modification. A series of VBT analogs were designed, synthesized, and evaluated. These compounds decrease the growth of multiple cancer types, including pancreas, prostate, breast, lung, and leukemia. Notably, 6-methyl (GRG-1-31, 6d), 4-Bromo (GRG-1-34, 6e), 4-Chloro (GRG-1-35, 6f), and phenylthio substituted (GRG-1-104, 6n) derivatives are highly potent at inhibiting tumor growth. The ability of these compounds to block cancer growth in vitro is highly correlated with their activity as mTORC inhibitors. The toxicity of GRG 1-34 is low in mice treated with twice-daily gavage for 30 days and did not induce weight loss. Pharmacokinetics of a single oral dose demonstrated a peak concentration at 0.5 hours after gavage. In summary, further development of this compound class has the potential to inhibit important signaling pathways and impact cancer treatment.

10.
J Infect Dis ; 223(10): 1677-1680, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33718952

RESUMEN

A cohort consisting of asymptomatic healthcare workers donated temporal serum samples after infection with severe acute respiratory syndrome coronavirus 2. Analysis shows that all asymptomatic healthcare workers had neutralizing antibodies, that these antibodies persist for ≥60 days, and that anti-spike receptor-binding domain immunoglobulin G levels were correspondingly durable over the same time period.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Enfermedades Asintomáticas , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Femenino , Personal de Salud , Humanos , Masculino , Pruebas de Neutralización , Encuestas y Cuestionarios , Factores de Tiempo , Virginia/epidemiología
11.
Expert Rev Proteomics ; 18(10): 845-861, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34607525

RESUMEN

INTRODUCTION: Laser Capture Microdissection (LCM) uses a laser to isolate, or capture, specific cells of interest in a complex heterogeneous tissue section, under direct microscopic visualization. Recently, there has been a surge of publications using LCM for tissue spatial molecular profiling relevant to a wide range of research topics. AREAS COVERED: We summarize the many advances in tissue Laser Capture Proteomics (LCP) using mass spectrometry for discovery, and protein arrays for signal pathway network mapping. This review emphasizes: a) transition of LCM phosphoproteomics from the lab to the clinic for individualized cancer therapy, and b) the emerging frontier of LCM single cell molecular analysis combining proteomics with genomic, and transcriptomic analysis. The search strategy was based on the combination of MeSH terms with expert refinement. EXPERT OPINION: LCM is complemented by a rich set of instruments, methodology protocols, and analytical A.I. (artificial intelligence) software for basic and translational research. Resolution is advancing to the tissue single cell level. A vision for the future evolution of LCM is presented. Emerging LCM technology is combining digital and AI guided remote imaging with automation, and telepathology, to a achieve multi-omic profiling that was not previously possible.


Asunto(s)
Medicina de Precisión , Proteómica , Inteligencia Artificial , Captura por Microdisección con Láser , Rayos Láser
12.
J Natl Compr Canc Netw ; 19(1): 10-15, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33406492

RESUMEN

Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic exocrine malignancy. Compared with the more common pancreatic ductal adenocarcinoma (PDAC), PACC is more common in younger White men, has earlier stages and a lower mean age (56 vs 70 years) at the time of presentation, and has a better prognosis. In addition to differences in demographic, histologic, and clinical characteristics, PACC has a genomic profile distinct from PDAC, with only rare mutations in TP53, KRAS, and p16 that are commonly found in PDAC. This case report presents a man aged 81 years who presented with a pancreatic body mass with peripancreatic lymph node enlargement. Biopsy of the mass showed acinar cell carcinoma. The patient underwent upfront surgical resection, followed by one cycle of adjuvant gemcitabine, with stoppage of therapy due to poor tolerance. Lower-dose gemcitabine was reintroduced after disease progression 6 months later. Nab-paclitaxel was added to gemcitabine after 6 cycles because of a continued increase in the size of peripancreatic lymph nodes. Combination chemotherapy was stopped after 4 cycles because of further disease progression with new liver metastasis. Molecular testing showed the presence of an SEL1L-NTRK1 fusion. Targeted therapy was started with the oral neurotrophic tropomyosin receptor kinase (NTRK) inhibitor larotrectinib at a dosage of 100 mg twice daily. At the time of writing, the patient has been on therapy for 13 months with an exceptional radiographic response and has not experienced any grade 3 adverse effects. To our knowledge, this is the first clinical report of an NTRK gene fusion in a patient with PACC. This case study highlights the significance of tumor molecular profiling in patients with pancreatic tumors, especially rare histologies.


Asunto(s)
Carcinoma de Células Acinares , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Células Acinares/tratamiento farmacológico , Carcinoma de Células Acinares/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Humanos , Masculino , Proteínas de Fusión Oncogénica/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas/genética , Receptor trkA/genética
13.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802212

RESUMEN

Targetable alterations in cancer offer novel opportunities to the drug discovery process. However, pre-clinical testing often requires solubilization of these drugs in cosolvents like dimethyl sulfoxide (DMSO). Using a panel of cell lines commonly used for in vitro drug screening and pre-clinical testing, we explored the DMSO off-target effects on functional signaling networks, drug targets, and downstream substrates. Eight Non-Small Cell Lung Cancer (NSCLC) cell lines were incubated with three concentrations of DMSO (0.0008%, 0.002%, and 0.004% v/v) over time. Expression and activation levels of 187 proteins, of which 137 were kinases and downstream substrates, were captured using the Reverse Phase Protein Array (RPPA). The DMSO effect was heterogeneous across cell lines and varied based on concentration, exposure time, and cell line. Of the 187 proteins measured, all were statistically different in at least one comparison at the highest DMSO concentration, followed by 99.5% and 98.9% at lower concentrations. Only 46% of the proteins were found to be statistically different in more than 5 cell lines, indicating heterogeneous response across models. These cell line specific alterations modulate response to in vitro drug screening. Ultra-low DMSO concentrations have broad and heterogeneous effects on targetable signaling proteins. Off-target effects need to be carefully evaluated in pre-clinical drug screening and testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Dimetilsulfóxido/farmacología , Sistemas de Liberación de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biosíntesis , Transducción de Señal/efectos de los fármacos , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología
14.
Lancet Oncol ; 21(4): 508-518, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32135080

RESUMEN

BACKGROUND: About 25% of pancreatic cancers harbour actionable molecular alterations, defined as molecular alterations for which there is clinical or strong preclinical evidence of a predictive benefit from a specific therapy. The Know Your Tumor (KYT) programme includes US patients with pancreatic cancer and enables patients to undergo commercially available multi-omic profiling to provide molecularly tailored therapy options and clinical trial recommendations. We sought to determine whether patients with pancreatic cancer whose tumours harboured such actionable molecular alterations and who received molecularly matched therapy had a longer median overall survival than similar patients who did not receive molecularly matched therapy. METHODS: In this retrospective analysis, treatment history and longitudinal survival outcomes were analysed in patients aged 18 years or older with biopsy-confirmed pancreatic cancer of any stage, enrolled in the KYT programme and who received molecular testing results. Since the timing of KYT enrolment varied for each patient, the primary outcome measurement of median overall survival was calculated from the initial diagnosis of advanced disease until death. We compared median overall survival in patients with actionable mutations who were treated with a matched therapy versus those who were not treated with a matched therapy. FINDINGS: Of 1856 patients with pancreatic cancer who were referred to the KYT programme between June 16, 2014, and March 31, 2019, 1082 (58%) patients received personalised reports based on their molecular testing results. Actionable molecular alterations were identified in 282 (26%) of 1082 samples. Among 677 patients for whom outcomes were available, 189 had actionable molecular alterations. With a median follow-up of 383 days (IQR 214-588), those patients with actionable molecular alterations who received a matched therapy (n=46) had significantly longer median overall survival than did those patients who only received unmatched therapies (n=143; 2·58 years [95% CI 2·39 to not reached] vs 1·51 years [1·33-1·87]; hazard ratio 0·42 [95% CI 0·26-0·68], p=0·0004). The 46 patients who received a matched therapy also had significantly longer overall survival than the 488 patients who did not have an actionable molecular alteration (2·58 years [95% CI 2·39 to not reached] vs 1·32 years [1·25-1·47]; HR 0·34 [95% CI 0·22-0·53], p<0·0001). However, median overall survival did not differ between the patients who received unmatched therapy and those without an actionable molecular alteration (HR 0·82 [95% CI 0·64-1·04], p=0·10). INTERPRETATION: These real-world outcomes suggest that the adoption of precision medicine can have a substantial effect on survival in patients with pancreatic cancer, and that molecularly guided treatments targeting oncogenic drivers and the DNA damage response and repair pathway warrant further prospective evaluation. FUNDING: Pancreatic Cancer Action Network and Perthera.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema de Registros , Estudios Retrospectivos , Tasa de Supervivencia , Estados Unidos
15.
Breast Cancer Res ; 22(1): 135, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267867

RESUMEN

BACKGROUND: The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. METHODS: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). RESULTS: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). CONCLUSIONS: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Detección Precoz del Cáncer/métodos , Proteínas de la Matriz Extracelular/sangre , Adulto , Anciano , Biopsia , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/sangre , Carcinoma Ductal de Mama/sangre , Carcinoma Ductal de Mama/patología , Estudios de Casos y Controles , Estudios de Cohortes , Proteínas de la Matriz Extracelular/química , Femenino , Humanos , Masculino , Mamografía , Persona de Mediana Edad , Nanopartículas/química , Proteómica/métodos
16.
Am J Pathol ; 189(9): 1846-1862, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31199921

RESUMEN

The mammalian target of rapamycin (mTOR) and associated phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway is commonly up-regulated in cancer, including bladder cancer. mTOR complex 2 (mTORC2) is a major regulator of bladder cancer cell migration and invasion, but the mechanisms by which mTORC2 regulates these processes are unclear. A discovery mass spectrometry and reverse-phase protein array-based proteomics dual approach was used to identify novel mTORC2 phosphoprotein targets in actively invading cancer cells. mTORC2 targets included focal adhesion kinase, proto-oncogene tyrosine-protein kinase Src, and caveolin-1 (Cav-1), among others. Functional testing shows that mTORC2 regulates Cav-1 localization and dynamic phosphorylation of Cav-1 on Y14. Regulation of Cav-1 activity by mTORC2 also alters the abundance of caveolae, which are specialized lipid raft invaginations of the plasma membrane associated with cell signaling and membrane compartmentalization. Our results demonstrate a unique role for mTORC2-mediated regulation of caveolae formation in actively migrating cancer cells.


Asunto(s)
Caveolas/patología , Caveolina 1/metabolismo , Movimiento Celular , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Adulto , Anciano , Anciano de 80 o más Años , Caveolas/metabolismo , Caveolina 1/antagonistas & inhibidores , Caveolina 1/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Persona de Mediana Edad , Fosforilación , Pronóstico , Proto-Oncogenes Mas , ARN Interferente Pequeño/genética , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
17.
Clin Proteomics ; 17: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32165870

RESUMEN

Reversible protein phosphorylation represents a key mechanism by which signals are transduced in eukaryotic cells. Dysregulated phosphorylation is also a hallmark of carcinogenesis and represents key drug targets in the precision medicine space. Thus, methods that preserve phosphoprotein integrity in the context of clinical tissue analyses are crucially important in cancer research. Here we investigated the impact of UV laser microdissection (UV LMD) and IR laser capture microdissection (IR LCM) on phosphoprotein abundance of key cancer signaling protein targets assessed by reverse-phase protein microarray (RPPA). Tumor epithelial cells from consecutive thin sections obtained from four high-grade serous ovarian cancers were harvested using either UV LMD or IR LCM methods. Phosphoprotein abundances for ten phosphoproteins that represent important drug targets were assessed by RPPA and revealed no significant differences in phosphoprotein integrity from those obtained using higher-energy UV versus the lower-energy IR laser methods.

18.
J Cell Physiol ; 234(7): 11188-11199, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30565691

RESUMEN

Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3'-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.


Asunto(s)
Clusterina/metabolismo , Proteínas Nucleares/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células 3T3 , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Clusterina/genética , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , MicroARNs/genética , Células PC-3 , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Próstata/patología , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética
19.
Br J Cancer ; 121(3): 264-270, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292535

RESUMEN

BACKGROUND: Molecular profiling is increasingly used to match patients with metastatic cancer to targeted therapies, but obtaining a high-quality biopsy specimen from metastatic sites can be difficult. METHODS: Patient samples were received by Perthera to coordinate genomic, proteomic and/or phosphoproteomic testing, using a specimen from either the primary tumour or a metastatic site. The relative frequencies were compared across specimen sites to assess the potential limitations of using a primary tumour sample for clinical decision support. RESULTS: No significant differences were identified at the gene or pathway level when comparing genomic alterations between primary and metastatic lesions. Site-specific trends towards enrichment of MYC amplification in liver lesions, STK11 mutations in lung lesions and ATM and ARID2 mutations in abdominal lesions were seen, but were not statistically significant after false-discovery rate correction. Comparative analyses of proteomic results revealed significantly elevated expression of ERCC1 and TOP1 in metastatic lesions. CONCLUSIONS: Tumour tissue limitations remain a barrier to precision oncology efforts, and these real-world data suggest that performing molecular testing on a primary tumour specimen could be considered in patients with pancreatic adenocarcinoma who do not have adequate tissue readily available from a metastatic site.


Asunto(s)
Neoplasias Pancreáticas/genética , Adulto , Anciano , Proteínas de la Ataxia Telangiectasia Mutada/genética , Femenino , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología , Proteómica , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética
20.
Adv Exp Med Biol ; 1188: 1-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31820380

RESUMEN

RPPA technology has graduated from a research tool to an essential component of clinical drug discovery research and personalized medicine. Next generations of RPPA technology will be a single clinical instrument that integrates all the steps of the workflow.


Asunto(s)
Medicina de Precisión , Análisis por Matrices de Proteínas , Proteómica , Medicina de Precisión/instrumentación , Medicina de Precisión/tendencias , Análisis por Matrices de Proteínas/normas , Análisis por Matrices de Proteínas/tendencias , Investigación/instrumentación , Investigación/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA