Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 15(6): 538-45, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24777530

RESUMEN

Double-stranded DNA (dsDNA) in the cytoplasm triggers the production of interleukin 1ß (IL-1ß) as an antiviral host response, and deregulation of the pathways involved can promote inflammatory disease. Here we report a direct cytosolic interaction between the DNA-damage sensor Rad50 and the innate immune system adaptor CARD9. Transfection of dendritic cells with dsDNA or infection of dendritic cells with a DNA virus induced the formation of dsDNA-Rad50-CARD9 signaling complexes for activation of the transcription factor NF-κB and the generation of pro-IL-1ß. Primary cells conditionally deficient in Rad50 or lacking CARD9 consequently exhibited defective DNA-induced production of IL-1ß, and Card9(-/-) mice had impaired inflammatory responses after infection with a DNA virus in vivo. Our results define a cytosolic DNA-recognition pathway for inflammation and a physical and functional connection between a conserved DNA-damage sensor and the innate immune response to pathogens.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Enzimas Reparadoras del ADN/inmunología , ADN Viral/inmunología , Proteínas de Unión al ADN/inmunología , Interleucina-1beta/biosíntesis , Virus Vaccinia/inmunología , Ácido Anhídrido Hidrolasas , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteína 10 de la LLC-Linfoma de Células B , Proteínas Adaptadoras de Señalización CARD/genética , Línea Celular , Citosol/inmunología , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Células Dendríticas/inmunología , Activación Enzimática , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , FN-kappa B/inmunología , Transducción de Señal , Receptor Toll-Like 4/biosíntesis , Receptor Toll-Like 9/biosíntesis , Virus Vaccinia/genética
2.
Bioessays ; 45(7): e2300042, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37147792

RESUMEN

Interferon stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is highly induced upon activation of interferon signaling and cytoplasmic DNA sensing pathways. As part of the innate immune system ISG15 acts to inhibit viral replication and particle release via the covalent conjugation to both viral and host proteins. Unlike ubiquitin, unconjugated ISG15 also functions as an intracellular and extra-cellular signaling molecule to modulate the immune response. Several recent studies have shown ISG15 to also function in a diverse array of cellular processes and pathways outside of the innate immune response. This review explores the role of ISG15 in maintaining genome stability, particularly during DNA replication, and how this relates to cancer biology. It puts forth the hypothesis that ISG15, along with DNA sensors, function within a DNA replication fork surveillance pathway to help maintain genome stability.


Asunto(s)
Citocinas , Interferones , ADN , Replicación del ADN , Inmunidad Innata , Ubiquitinas/genética , Ubiquitinas/metabolismo , Humanos , Animales
3.
Cell ; 137(2): 211-2, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19379688

RESUMEN

DNA strand breaks that result in stalled or damaged replication forks can be detrimental to the DNA replication process. In this issue, Doksani et al. (2009) examine the impact of a single double-stranded DNA break on replication in the budding yeast, Saccharomyces cerevisiae.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Fase S , Saccharomyces cerevisiae/metabolismo
4.
Nat Rev Mol Cell Biol ; 12(2): 90-103, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21252998

RESUMEN

The maintenance of genome stability depends on the DNA damage response (DDR), which is a functional network comprising signal transduction, cell cycle regulation and DNA repair. The metabolism of DNA double-strand breaks governed by the DDR is important for preventing genomic alterations and sporadic cancers, and hereditary defects in this response cause debilitating human pathologies, including developmental defects and cancer. The MRE11 complex, composed of the meiotic recombination 11 (MRE11), RAD50 and Nijmegen breakage syndrome 1 (NBS1; also known as nibrin) proteins is central to the DDR, and recent insights into its structure and function have been gained from in vitro structural analysis and studies of animal models in which the DDR response is deficient.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Animales , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Humanos , Pyrococcus furiosus/química , Pyrococcus furiosus/metabolismo
5.
Mol Cell ; 57(4): 622-635, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25620558

RESUMEN

The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.


Asunto(s)
ADN Helicasas/fisiología , Modelos Genéticos , Fase S , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/fisiología , Animales , Células Cultivadas , ADN Helicasas/química , ADN Helicasas/metabolismo , Humanos , Metafase , Ratones , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
6.
Mol Cell ; 57(3): 479-91, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25601756

RESUMEN

Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions.


Asunto(s)
Cromátides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Mutación , Fenotipo , Conformación Proteica , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
7.
PLoS Genet ; 16(3): e1008422, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187176

RESUMEN

The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Carcinogénesis/genética , Saccharomyces cerevisiae/genética , Animales , Daño del ADN/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Genómica/métodos , Proteína Homóloga de MRE11/genética , Mutación/genética , Células Sf9 , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética
8.
Proc Natl Acad Sci U S A ; 116(30): 15178-15183, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285322

RESUMEN

We derived a mouse model in which a mutant form of Nbn/Nbs1mid8 (hereafter Nbnmid8) exhibits severely impaired binding to the Mre11-Rad50 core of the Mre11 complex. The Nbnmid8 allele was expressed exclusively in hematopoietic lineages (in Nbn-/mid8vav mice). Unlike Nbnflox/floxvav mice with Nbn deficiency in the bone marrow, Nbn-/mid8vav mice were viable. Nbn-/mid8vav mice hematopoiesis was profoundly defective, exhibiting reduced cellularity of thymus and bone marrow, and stage-specific blockage of B cell development. Within 6 mo, Nbn-/mid8 mice developed highly penetrant T cell leukemias. Nbn-/mid8vav leukemias recapitulated mutational features of human T cell acute lymphoblastic leukemia (T-ALL), containing mutations in NOTCH1, TP53, BCL6, BCOR, and IKZF1, suggesting that Nbnmid8 mice may provide a venue to examine the relationship between the Mre11 complex and oncogene activation in the hematopoietic compartment. Genomic analysis of Nbn-/mid8vav malignancies showed focal amplification of 9qA2, causing overexpression of MRE11 and CHK1 We propose that overexpression of MRE11 compensates for the metastable Mre11-Nbnmid8 interaction, and that selective pressure for overexpression reflects the essential role of Nbn in promoting assembly and activity of the Mre11 complex.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Proteína Homóloga de MRE11/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfocitos T/inmunología , Ácido Anhídrido Hidrolasas/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Médula Ósea/inmunología , Médula Ósea/patología , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/inmunología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/inmunología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/inmunología , Modelos Animales de Enfermedad , Inestabilidad Genómica/inmunología , Hematopoyesis/genética , Hematopoyesis/inmunología , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/inmunología , Proteína Homóloga de MRE11/inmunología , Ratones , Ratones Noqueados , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/prevención & control , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Receptor Notch1/genética , Receptor Notch1/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Transducción de Señal , Linfocitos T/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología
9.
Genes Dev ; 28(5): 451-62, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24532689

RESUMEN

The Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn(2+)-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype. In this study, we analyzed mutants with reduced hook domain function in an effort to stratify hook-dependent Mre11 complex functions. One of these alleles, Rad50(46), conferred reduced Zn(2+) affinity and dimerization efficiency. Homozygous Rad50(46/46) mutations were lethal in mice. However, in the presence of wild-type Rad50, Rad50(46) exerted a dominant gain-of-function phenotype associated with chronic DDR signaling. At the organismal level, Rad50(+/46) exhibited hydrocephalus, liver tumorigenesis, and defects in primitive hematopoietic and gametogenic cells. These outcomes were dependent on ATM, as all phenotypes were mitigated in Rad50(+/46) Atm(+/-) mice. These data reveal that the murine Rad50 hook domain strongly influences Mre11 complex-dependent DDR signaling, tissue homeostasis, and tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Daño del ADN , Transducción de Señal/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinogénesis/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Germinativas/patología , Proteína Homóloga de MRE11 , Ratones , Mutación , Fenotipo , Estructura Terciaria de Proteína
10.
Mol Cell ; 52(3): 353-65, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24120666

RESUMEN

The DNA damage response (DDR) is activated by oncogenic stress, but the mechanisms by which this occurs, and the particular DDR functions that constitute barriers to tumorigenesis, remain unclear. We established a mouse model of sporadic oncogene-driven breast tumorigenesis in a series of mutant mouse strains with specific DDR deficiencies to reveal a role for the Mre11 complex in the response to oncogene activation. We demonstrate that an Mre11-mediated DDR restrains mammary hyperplasia by effecting an oncogene-induced G2 arrest. Impairment of Mre11 complex functions promotes the progression of mammary hyperplasias into invasive and metastatic breast cancers, which are often associated with secondary inactivation of the Ink4a-Arf (CDKN2a) locus. These findings provide insight into the mechanism of DDR engagement by activated oncogenes and highlight genetic interactions between the DDR and Ink4a-Arf pathways in suppression of oncogene-driven tumorigenesis and metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis , Proteínas de Unión al ADN/metabolismo , Oncogenes , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hiperplasia/genética , Proteína Homóloga de MRE11 , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Metástasis de la Neoplasia/genética
11.
Mol Cell ; 48(1): 98-108, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22885006

RESUMEN

The cohesin complex holds together newly replicated chromatids and is involved in diverse pathways that preserve genome integrity. We show that in budding yeast, cohesin is transiently recruited to active replication origins, and it spreads along DNA as forks progress. When DNA synthesis is impeded, cohesin accumulates at replication sites and is critical for the recovery of stalled forks. Cohesin enrichment at replication forks does not depend on γH2A(X) formation, which differs from its loading requirements at DNA double-strand breaks (DSBs). However, cohesin localization is largely reduced in rad50Δ mutants and in cells lacking both Mec1 and Tel1 checkpoint kinases. Interestingly, cohesin loading at replication sites depends on the structural features of Rad50 that are important for bridging sister chromatids, including the CXXC hook domain and the length of the coiled-coil extensions. Together, these data reveal a function for cohesin in the maintenance of genome integrity during S phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Genes Fúngicos , Histonas/metabolismo , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico , Cohesinas
13.
Chromosoma ; 125(1): 151-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26232174

RESUMEN

The MRE11 complex (MRE11, RAD50, and NBS1) is a central component of the DNA damage response, governing both double-strand break repair and DNA damage response signaling. To determine the functions of the MRE11 complex in the development and maintenance of oocytes, we analyzed ovarian phenotypes of mice harboring the hypomorphic Mre11 (ATLD1) allele. Mre11 (ATLD1/ATLD1) females exhibited premature oocyte elimination attributable to defects in homologous chromosome pairing and double-strand break repair during meiotic prophase. Other aspects of meiotic progression, including attachment of telomeres to the nuclear envelope and recruitment of RAD21L, a component of the meiotic cohesin complex to the synaptonemal complex, were normal. Unlike Dmc1 (-/-) and Trp13 (Gt/Gt) mice which exhibit comparable defects in double-strand break repair and oocyte depletion by 5 days post-partum, we found that oocyte attrition occurred by 12 weeks in Mre11 (ATLD1/ATLD1) . Disruption of the oocyte checkpoint pathway governed by Chk2 gene further enhanced the survival of Mre11 (ATLD1/ATLD1) follicles. Together our data suggest that the MRE11 complex influences the elimination of oocytes with unrepaired meiotic double-strand breaks post-natally, in addition to its previously described role in double-strand break repair and homologous synapsis during female meiosis.


Asunto(s)
Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/fisiología , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Meiosis , Oocitos/metabolismo , Oogonios/metabolismo , Animales , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Proteína Homóloga de MRE11 , Ratones , Ratones Transgénicos , Oogénesis , Oogonios/fisiología
14.
Mol Cell ; 33(2): 147-59, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19187758

RESUMEN

Oligomeric assembly of Brca1 C-terminal (BRCT) domain-containing mediator proteins occurs at sites of DNA damage. However, the functional significance and regulation of such assemblies are not well understood. In this study, we defined the molecular mechanism of DNA-damage-induced oligomerization of the S. cerevisiae BRCT protein Rad9. Our data suggest that Rad9's tandem BRCT domain mediates Rad9 oligomerization via its interaction with its own Mec1/Tel1-phosphorylated SQ/TQ cluster domain (SCD). Rad53 activation is unaffected by mutations that impair Rad9 oligomerization, but checkpoint maintenance is lost, indicating that oligomerization is required to sustain checkpoint signaling. Once activated, Rad53 phosphorylates the Rad9 BRCT domain, which attenuates the BRCT-SCD interaction. Failure to phosphorylate the Rad9 BRCT results in cytologically visible Rad9 foci. This suggests a feedback loop wherein Rad53 activity and Rad9 oligomerization are regulated to tune the DNA-damage response.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , ADN de Hongos/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Quinasa de Punto de Control 2 , Genes cdc , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
15.
Mol Cell ; 34(1): 13-25, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19362533

RESUMEN

Recent work has highlighted the importance of alternative, error-prone mechanisms for joining DNA double-strand breaks (DSBs) in mammalian cells. These noncanonical, nonhomologous end-joining (NHEJ) pathways threaten genomic stability but remain poorly characterized. The RAG postcleavage complex normally prevents V(D)J recombination-associated DSBs from accessing alternative NHEJ. Because the MRE11/RAD50/NBS1 complex localizes to RAG-mediated DSBs and possesses DNA end tethering, processing, and joining activities, we asked whether it plays a role in the mechanism of alternative NHEJ or participates in regulating access of DSBs to alternative repair pathways. We find that NBS1 is required for alternative NHEJ of hairpin coding ends, suppresses alternative NHEJ of signal ends, and promotes proper resolution of inversional recombination intermediates. These data demonstrate that the MRE11 complex functions at two distinct levels, regulating repair pathway choice (likely through enhancing the stability of DNA end complexes) and participating in alternative NHEJ of coding ends.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Roturas del ADN de Doble Cadena , Proteínas Nucleares/fisiología , Recombinación Genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/fisiología , Ácido Anhídrido Hidrolasas , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Reparación del ADN/fisiología , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Endonucleasas , Proteína Homóloga de MRE11 , Ratones , Mutación , Proteínas Nucleares/genética , Proteína Quinasa C/genética , VDJ Recombinasas/metabolismo
16.
Genes Dev ; 23(2): 171-80, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19171781

RESUMEN

The MRN complex (Mre11/RAD50/NBS1) and ATM (ataxia telangiectasia, mutated) are critical for the cellular response to DNA damage. ATM disruption causes ataxia telangiectasia (A-T), while MRN dysfunction can lead to A-T-like disease (ATLD) or Nijmegen breakage syndrome (NBS). Neuropathology is a hallmark of these diseases, whereby neurodegeneration occurs in A-T and ATLD while microcephaly characterizes NBS. To understand the contrasting neuropathology resulting from Mre11 or Nbs1 hypomorphic mutations, we analyzed neural tissue from Mre11(ATLD1/ATLD1) and Nbs1(DeltaB/DeltaB) mice after genotoxic stress. We found a pronounced resistance to DNA damage-induced apoptosis after ionizing radiation or DNA ligase IV (Lig4) loss in the Mre11(ATLD1/ATLD1) nervous system that was associated with defective Atm activation and phosphorylation of its substrates Chk2 and p53. Conversely, DNA damage-induced Atm phosphorylation was defective in Nbs1(DeltaB/DeltaB) neural tissue, although apoptosis occurred normally. We also conditionally disrupted Lig4 throughout the nervous system using Nestin-cre (Lig4(Nes-Cre)), and while viable, these mice showed pronounced microcephaly and a prominent age-related accumulation of DNA damage throughout the brain. Either Atm-/- or Mre11(ATLD1/ATLD1) genetic backgrounds, but not Nbs1(DeltaB/DeltaB), rescued Lig4(Nes-Cre) microcephaly. Thus, DNA damage signaling in the nervous system is different between ATLD and NBS and likely explains their respective neuropathology.


Asunto(s)
Apoptosis , Ataxia Telangiectasia/fisiopatología , Daño del ADN/fisiología , Neuronas/fisiología , Síndrome de Nijmegen/fisiopatología , Transducción de Señal/genética , Animales , Apoptosis/efectos de la radiación , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada , Encéfalo/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/fisiología , Femenino , Proteína Homóloga de MRE11 , Masculino , Ratones , Ratones Transgénicos , Microcefalia/patología , Mutación , Neuronas/citología , Neuronas/efectos de la radiación , Síndrome de Nijmegen/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Mol Cell ; 31(1): 21-32, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614044

RESUMEN

The Mre11 complex (Mre11, Rad50, and Nbs1) and Chk2 have been implicated in the DNA-damage response, an inducible process required for the suppression of malignancy. The Mre11 complex is predominantly required for repair and checkpoint activation in S phase, whereas Chk2 governs apoptosis. We examined the relationship between the Mre11 complex and Chk2 in the DNA-damage response via the establishment of Nbs1(DeltaB/DeltaB) Chk2(-/-) and Mre11(ATLD1/ATLD1) Chk2(-/-) mice. Chk2 deficiency did not modify the checkpoint defects or chromosomal instability of Mre11 complex mutants; however, the double-mutant mice exhibited synergistic defects in DNA-damage-induced p53 regulation and apoptosis. Nbs1(DeltaB/DeltaB) Chk2(-/-) and Mre11(ATLD1/ATLD1) Chk2(-/-) mice were also predisposed to tumors. In contrast, DNA-PKcs-deficient mice, in which G1-specific chromosome breaks are present, did not exhibit synergy with Chk2(-/-) mutants. These data suggest that Chk2 suppresses the oncogenic potential of DNA damage arising during S and G2 phases of the cell cycle.


Asunto(s)
Daño del ADN , Replicación del ADN , Lesiones Precancerosas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Alelos , Animales , Apoptosis , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Inestabilidad Cromosómica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN Complementario/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Exones/genética , Genoma/genética , Proteína Homóloga de MRE11 , Ratones , Mutación/genética , Proteínas Nucleares/metabolismo , Lesiones Precancerosas/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo
18.
PLoS Genet ; 9(8): e1003695, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24009516

RESUMEN

Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.


Asunto(s)
ADN Helicasas/genética , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Síndromes de Inmunodeficiencia/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Microcefalia/genética , Microcefalia/patología , Adulto , Disqueratosis Congénita/etiología , Femenino , Retardo del Crecimiento Fetal/etiología , Genes Recesivos , Mutación de Línea Germinal , Homocigoto , Humanos , Síndromes de Inmunodeficiencia/genética , Discapacidad Intelectual/etiología , Judíos , Microcefalia/etiología , Datos de Secuencia Molecular , Mutación , Fenotipo , Telomerasa/genética , Telómero/genética
19.
Proc Natl Acad Sci U S A ; 109(25): 9953-8, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22670056

RESUMEN

The DNA damage response comprises DNA repair, cell-cycle checkpoint control, and DNA damage-induced apoptosis that collectively promote genomic integrity and suppress tumorigenesis. Previously, we have shown that the Chk2 kinase functions independently of the Mre11 complex (Mre11, Rad50, and Nbs1) and ATM in apoptosis and suppresses tumorigenesis resulting from hypomorphic alleles of Mre11 or Nbs1. Based on this work, we have proposed that Chk2 limits the oncogenic potential of replication-associated DNA damage. Here we further address the role of Chk2 and damage-induced apoptosis in suppressing the oncogenic potential of chromosome breaks. We show that loss of Chk2 or a mutation in p53 (R172P), which selectively impairs its function in apoptosis, rescued the lethality of mice lacking Lig4, a ligase required for nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks in G0/G1. In contrast to Lig4(-/-)p53(-/-) mice, Lig4(-/-)Chk2(-/-) and Lig4(-/-)p53(R172P/R172P) mice were not prone to organ-specific, rapid tumorigenesis. Although the severe NHEJ deficiency of Lig4(-/-) was a less potent initiator of tumorigenesis in the p53(R172P/R172P) and Chk2(-/-) backgrounds, where p53 cell-cycle functions are largely intact, even mild defects in the intra-S and G2/M checkpoints caused by mutations in Nbs1 are sufficient to influence malignancy in p53(R172P/R172P) mice. We conclude that the oncogenic potential of double-strand breaks resulting from NHEJ deficiency is highly restricted by nonapoptotic functions of p53, such as the G1/S checkpoint or senescence, suggesting that the particular facets of the DNA damage response required for tumor suppression are dictated by the proliferative status of the tumor-initiating cell.


Asunto(s)
Apoptosis , Ciclo Celular , Reparación del ADN , Neoplasias Experimentales/patología , Animales , Daño del ADN , Genes p53 , Ratones , Mutación , Neoplasias Experimentales/genética
20.
PLoS Genet ; 8(8): e1002935, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22927831

RESUMEN

The cyclin-dependent kinases (CDKs) that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity. In mammals, Cdk2 is active throughout S and G2 phases, but Cdk2 protein is dispensable for survival, owing to compensation by other CDKs. That plasticity obscured a requirement for Cdk2 activity in proliferation of human cells, which we uncovered by replacement of wild-type Cdk2 with a mutant version sensitized to inhibition by bulky adenine analogs. Here we show that transient, selective inhibition of analog-sensitive (AS) Cdk2 after exposure to ionizing radiation (IR) enhances cell-killing. In extracts supplemented with an ATP analog used preferentially by AS kinases, Cdk2(as) phosphorylated the Nijmegen Breakage Syndrome gene product Nbs1-a component of the conserved Mre11-Rad50-Nbs1 complex required for normal DNA damage repair and checkpoint signaling-dependent on a consensus CDK recognition site at Ser432. In vivo, selective inhibition of Cdk2 delayed and diminished Nbs1-Ser432 phosphorylation during S phase, and mutation of Ser432 to Ala or Asp increased IR-sensitivity. Therefore, by chemical genetics, we uncovered both a non-redundant requirement for Cdk2 activity in response to DNA damage and a specific target of Cdk2 within the DNA repair machinery.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Daño del ADN/efectos de la radiación , Proteínas Nucleares/metabolismo , Radiación Ionizante , Ácido Anhídrido Hidrolasas , Ciclo Celular , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Homóloga de MRE11 , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA