Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(33): e2300984120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549291

RESUMEN

Current knowledge of cancer genomics remains biased against noncoding mutations. To systematically search for regulatory noncoding mutations, we assessed mutations in conserved positions in the genome under the assumption that these are more likely to be functional than mutations in positions with low conservation. To this end, we use whole-genome sequencing data from the International Cancer Genome Consortium and combined it with evolutionary constraint inferred from 240 mammals, to identify genes enriched in noncoding constraint mutations (NCCMs), mutations likely to be regulatory in nature. We compare medulloblastoma (MB), which is malignant, to pilocytic astrocytoma (PA), a primarily benign tumor, and find highly different NCCM frequencies between the two, in agreement with the fact that malignant cancers tend to have more mutations. In PA, a high NCCM frequency only affects the BRAF locus, which is the most commonly mutated gene in PA. In contrast, in MB, >500 genes have high levels of NCCMs. Intriguingly, several loci with NCCMs in MB are associated with different ages of onset, such as the HOXB cluster in young MB patients. In adult patients, NCCMs occurred in, e.g., the WASF-2/AHDC1/FGR locus. One of these NCCMs led to increased expression of the SRC kinase FGR and augmented responsiveness of MB cells to dasatinib, a SRC kinase inhibitor. Our analysis thus points to different molecular pathways in different patient groups. These newly identified putative candidate driver mutations may aid in patient stratification in MB and could be valuable for future selection of personalized treatment options.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Adulto , Animales , Humanos , Meduloblastoma/patología , Mutación , Genoma , Neoplasias Cerebelosas/genética , Familia-src Quinasas/genética , Mamíferos/genética , Proteínas de Unión al ADN/genética
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301272

RESUMEN

The transcription factor and cell cycle regulator p53 is marked for degradation by the ubiquitin ligase MDM2. The interaction between these 2 proteins is mediated by a conserved binding motif in the disordered p53 transactivation domain (p53TAD) and the folded SWIB domain in MDM2. The conserved motif in p53TAD from zebrafish displays a 20-fold weaker interaction with MDM2, compared to the interaction in human and chicken. To investigate this apparent difference, we tracked the molecular evolution of the p53TAD/MDM2 interaction among ray-finned fishes (Actinopterygii), the largest vertebrate clade. Intriguingly, phylogenetic analyses, ancestral sequence reconstructions, and binding experiments showed that different loss-of-affinity changes in the canonical binding motif within p53TAD have occurred repeatedly and convergently in different fish lineages, resulting in relatively low extant affinities (KD = 0.5 to 5 µM). However, for 11 different fish p53TAD/MDM2 interactions, nonconserved regions flanking the canonical motif increased the affinity 4- to 73-fold to be on par with the human interaction. Our findings suggest that compensating changes at conserved and nonconserved positions within the motif, as well as in flanking regions of low conservation, underlie a stabilizing selection of "functional affinity" in the p53TAD/MDM2 interaction. Such interplay complicates bioinformatic prediction of binding and calls for experimental validation. Motif-mediated protein-protein interactions involving short binding motifs and folded interaction domains are very common across multicellular life. It is likely that the evolution of affinity in motif-mediated interactions often involves an interplay between specific interactions made by conserved motif residues and nonspecific interactions by nonconserved disordered regions.


Asunto(s)
Proteína p53 Supresora de Tumor , Pez Cebra , Animales , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Filogenia , Estructura Terciaria de Proteína , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(25): e2201844119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696585

RESUMEN

Retroviruses have left their legacy in host genomes over millions of years as endogenous retroviruses (ERVs), and their structure, diversity, and prevalence provide insights into the historical dynamics of retrovirus-host interactions. In bioinformatic analyses of koala (Phascolarctos cinereus) whole-genome sequences, we identify a recently expanded ERV lineage (phaCin-ß) that is related to the New World squirrel monkey retrovirus. This ERV expansion shares many parallels with the ongoing koala retrovirus (KoRV) invasion of the koala genome, including highly similar and mostly intact sequences, and polymorphic ERV loci in the sampled koala population. The recent phaCin-ß ERV colonization of the koala genome appears to predate the current KoRV invasion, but polymorphic ERVs and divergence comparisons between these two lineages predict a currently uncharacterized, possibly still extant, phaCin-ß retrovirus. The genomics approach to ERV-guided discovery of novel retroviruses in host species provides a strong incentive to search for phaCin-ß retroviruses in the Australasian fauna.


Asunto(s)
Betaretrovirus , Retrovirus Endógenos , Interacciones Microbiota-Huesped , Phascolarctidae , Infecciones por Retroviridae , Animales , Betaretrovirus/genética , Retrovirus Endógenos/genética , Evolución Molecular , Genoma , Genómica , Phascolarctidae/genética , Phascolarctidae/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología
5.
BMC Genomics ; 25(1): 459, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730342

RESUMEN

BACKGROUND: Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS: The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS: This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.


Asunto(s)
Variaciones en el Número de Copia de ADN , Peces , Animales , Peces/genética , Peces/inmunología , Variación Genética , Océano Atlántico , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma
6.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33479174

RESUMEN

The relative role of genetic adaptation and phenotypic plasticity is of fundamental importance in evolutionary ecology [M. J. West-Eberhard, Proc. Natl. Acad. Sci. U.S.A. 102 (suppl. 1), 6543-6549 (2005)]. European eels have a complex life cycle, including transitions between life stages across ecological conditions in the Sargasso Sea, where spawning occurs, and those in brackish and freshwater bodies from northern Europe to northern Africa. Whether continental eel populations consist of locally adapted and genetically distinct populations or comprise a single panmictic population has received conflicting support. Here we use whole-genome sequencing and show that European eels belong to one panmictic population. A complete lack of geographical genetic differentiation is demonstrated. We postulate that this is possible because the most critical life stages-spawning and embryonic development-take place under near-identical conditions in the Sargasso Sea. We further show that within-generation selection, which has recently been proposed as a mechanism for genetic adaptation in eels, can only marginally change allele frequencies between cohorts of eels from different geographic regions. Our results strongly indicate plasticity as the predominant mechanism for how eels respond to diverse environmental conditions during postlarval stages, ultimately solving a long-standing question for a classically enigmatic species.


Asunto(s)
Adaptación Fisiológica/genética , Anguilla/genética , Migración Animal/fisiología , Genoma , Reproducción/genética , África del Norte , Alelos , Animales , Mapeo Cromosómico , Europa (Continente) , Femenino , Frecuencia de los Genes , Genética de Población , Heterocigoto , Homocigoto , Estadios del Ciclo de Vida/genética , Masculino , Análisis de Componente Principal
7.
PLoS Genet ; 17(9): e1009726, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34473707

RESUMEN

Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs-the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity.


Asunto(s)
Enfermedades de los Perros/genética , Perros/genética , Variación Genética , Enfermedades de las Válvulas Cardíacas/veterinaria , Válvula Mitral/patología , Mutación , Alelos , Animales , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica , Enfermedades de las Válvulas Cardíacas/genética
8.
Proc Natl Acad Sci U S A ; 117(39): 24359-24368, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32938798

RESUMEN

The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.


Asunto(s)
Peces/genética , Cromosomas Sexuales/genética , Animales , Evolución Molecular , Femenino , Proteínas de Peces/genética , Peces/fisiología , Duplicación de Gen , Masculino , Reproducción
9.
Genome Res ; 29(11): 1919-1928, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31649060

RESUMEN

The Atlantic herring is a model species for exploring the genetic basis for ecological adaptation, due to its huge population size and extremely low genetic differentiation at selectively neutral loci. However, such studies have so far been hampered because of a highly fragmented genome assembly. Here, we deliver a chromosome-level genome assembly based on a hybrid approach combining a de novo Pacific Biosciences (PacBio) assembly with Hi-C-supported scaffolding. The assembly comprises 26 autosomes with sizes ranging from 12.4 to 33.1 Mb and a total size, in chromosomes, of 726 Mb, which has been corroborated by a high-resolution linkage map. A comparison between the herring genome assembly with other high-quality assemblies from bony fishes revealed few inter-chromosomal but frequent intra-chromosomal rearrangements. The improved assembly facilitates analysis of previously intractable large-scale structural variation, allowing, for example, the detection of a 7.8-Mb inversion on Chromosome 12 underlying ecological adaptation. This supergene shows strong genetic differentiation between populations. The chromosome-based assembly also markedly improves the interpretation of previously detected signals of selection, allowing us to reveal hundreds of independent loci associated with ecological adaptation.


Asunto(s)
Mapeo Cromosómico , Peces/genética , Genoma , Adaptación Fisiológica/genética , Animales , Selección Genética
10.
Proc Natl Acad Sci U S A ; 116(37): 18473-18478, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451650

RESUMEN

The evolutionary process that occurs when a species colonizes a new environment provides an opportunity to explore the mechanisms underlying genetic adaptation, which is essential knowledge for understanding evolution and the maintenance of biodiversity. Atlantic herring has an estimated total breeding stock of about 1 trillion (1012) and has colonized the brackish Baltic Sea within the last 10,000 y. Minute genetic differentiation between Atlantic and Baltic herring populations at selectively neutral loci combined with this rapid adaptation to a new environment facilitated the identification of hundreds of loci underlying ecological adaptation. A major question in the field of evolutionary biology is to what extent such an adaptive process involves selection of novel mutations with large effects or genetic changes at many loci, each with a small effect on phenotype (i.e., selection on standing genetic variation). Here we show that a missense mutation in rhodopsin (Phe261Tyr) is an adaptation to the red-shifted Baltic Sea light environment. The transition from phenylalanine to tyrosine differs only by the presence of a hydroxyl moiety in the latter, but this results in an up to 10-nm red-shifted light absorbance of the receptor. Remarkably, an examination of the rhodopsin sequences from 2,056 species of fish revealed that the same missense mutation has occurred independently and been selected for during at least 20 transitions between light environments across all fish. Our results provide a spectacular example of convergent evolution and how a single amino acid change can have a major effect on ecological adaptation.


Asunto(s)
Adaptación Biológica/genética , Evolución Molecular , Proteínas de Peces/genética , Peces/genética , Rodopsina/genética , Sustitución de Aminoácidos , Animales , Sitios Genéticos/genética , Fenilalanina/genética , Conformación Proteica en Hélice alfa/genética , Selección Genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Tirosina/genética , Visión Ocular/genética , Secuenciación Completa del Genoma
11.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35162039

RESUMEN

This article proposes an Automatic Target Recognition (ATR) algorithm to classify non-cooperative targets in Synthetic Aperture Radar (SAR) images. The scarcity or nonexistence of measured SAR data demands that classification algorithms rely only on synthetic data for training purposes. Based on a model represented by the set of scattering centers extracted from purely synthetic data, the proposed algorithm generates hypotheses for the set of scattering centers extracted from the target under test belonging to each class. A Goodness of Fit test is considered to verify each hypothesis, where the Likelihood Ratio Test is modified by a scattering center-weighting function common to both the model and target. Some algorithm variations are assessed for scattering center extraction and hypothesis generation and verification. The proposed solution is the first model-based classification algorithm to address the recently released Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset on a 100% synthetic training data basis. As a result, an accuracy of 91.30% in a 10-target test within a class experiment under Standard Operating Conditions (SOCs) was obtained. The algorithm was also pioneered in testing the SAMPLE dataset in Extend Operating Conditions (EOCs), assuming noise contamination and different target configurations. The proposed algorithm was shown to be robust for SNRs greater than -5 dB.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Radar , Algoritmos , Reconocimiento en Psicología
12.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808437

RESUMEN

Time-domain backprojection algorithms are widely used in state-of-the-art synthetic aperture radar (SAR) imaging systems that are designed for applications where motion error compensation is required. These algorithms include an interpolation procedure, under which an unknown SAR range-compressed data parameter is estimated based on complex-valued SAR data samples and backprojected into a defined image plane. However, the phase of complex-valued SAR parameters estimated based on existing interpolators does not contain correct information about the range distance between the SAR imaging system and the given point of space in a defined image plane, which affects the quality of reconstructed SAR scenes. Thus, a phase-control procedure is required. This paper introduces extensions of existing linear, cubic, and sinc interpolation algorithms to interpolate complex-valued SAR data, where the phase of the interpolated SAR data value is controlled through the assigned a priori known range time that is needed for a signal to reach the given point of the defined image plane and return back. The efficiency of the extended algorithms is tested at the Nyquist rate on simulated and real data at THz frequencies and compared with existing algorithms. In comparison to the widely used nearest-neighbor interpolation algorithm, the proposed extended algorithms are beneficial from the lower computational complexity perspective, which is directly related to the offering of smaller memory requirements for SAR image reconstruction at THz frequencies.

13.
Proc Natl Acad Sci U S A ; 115(43): 11012-11017, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297425

RESUMEN

Although recent advances in sequencing and computational analyses have facilitated use of endogenous retroviruses (ERVs) for deciphering coevolution among retroviruses and their hosts, sampling effects from different host populations present major challenges. Here we utilize available whole-genome data from wild and domesticated European rabbit (Oryctolagus cuniculus sp.) populations, sequenced as DNA pools by paired-end Illumina technology, for identifying segregating reference as well as nonreference ERV loci, to reveal their variation along the host phylogeny and domestication history. To produce new viruses, retroviruses must insert a proviral DNA copy into the host nuclear DNA. Occasional proviral insertions into the host germline have been passed down through generations as inherited ERVs during millions of years. These ERVs represent retroviruses that were active at the time of infection and thus present a remarkable record of historical virus-host associations. To examine segregating ERVs in host populations, we apply a reference library search strategy for anchoring ERV-associated short-sequence read pairs from pooled whole-genome sequences to reference genome assembly positions. We show that most ERVs segregate along host phylogeny but also uncover radiation of some ERVs, identified as segregating loci among wild and domestic rabbits. The study targets pertinent issues regarding genome sampling when examining virus-host evolution from the genomic ERV record and offers improved scope regarding common strategies for single-nucleotide variant analyses in host population comparative genomics.


Asunto(s)
Animales Domésticos/virología , Retrovirus Endógenos/genética , Genoma Viral/genética , Especificidad del Huésped/genética , Animales , Hibridación Genómica Comparativa/métodos , ADN/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Filogenia , Polimorfismo de Nucleótido Simple/genética , Conejos
14.
Sensors (Basel) ; 20(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260105

RESUMEN

This paper presents five different statistical methods for ground scene prediction (GSP) in wavelength-resolution synthetic aperture radar (SAR) images. The GSP image can be used as a reference image in a change detection algorithm yielding a high probability of detection and low false alarm rate. The predictions are based on image stacks, which are composed of images from the same scene acquired at different instants with the same flight geometry. The considered methods for obtaining the ground scene prediction include (i) autoregressive models; (ii) trimmed mean; (iii) median; (iv) intensity mean; and (v) mean. It is expected that the predicted image presents the true ground scene without change and preserves the ground backscattering pattern. The study indicates that the the median method provided the most accurate representation of the true ground. To show the applicability of the GSP, a change detection algorithm was considered using the median ground scene as a reference image. As a result, the median method displayed the probability of detection of 97 % and a false alarm rate of 0 . 11 / km 2 , when considering military vehicles concealed in a forest.

15.
PLoS Genet ; 10(12): e1004842, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25503602

RESUMEN

As Arabidopsis thaliana has colonized a wide range of habitats across the world it is an attractive model for studying the genetic mechanisms underlying environmental adaptation. Here, we used public data from two collections of A. thaliana accessions to associate genetic variability at individual loci with differences in climates at the sampling sites. We use a novel method to screen the genome for plastic alleles that tolerate a broader climate range than the major allele. This approach reduces confounding with population structure and increases power compared to standard genome-wide association methods. Sixteen novel loci were found, including an association between Chromomethylase 2 (CMT2) and temperature seasonality where the genome-wide CHH methylation was different for the group of accessions carrying the plastic allele. Cmt2 mutants were shown to be more tolerant to heat-stress, suggesting genetic regulation of epigenetic modifications as a likely mechanism underlying natural adaptation to variable temperatures, potentially through differential allelic plasticity to temperature-stress.


Asunto(s)
Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Polimorfismo Genético , Estaciones del Año , Temperatura , Adaptación Fisiológica/genética , Alelos , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Sitios Genéticos , Técnicas de Genotipaje
16.
Trends Genet ; 29(12): 669-76, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24161664

RESUMEN

Quantitative genetics traces its roots back through more than a century of theory, largely formed in the absence of directly observable genotype data, and has remained essentially unchanged for decades. By contrast, molecular genetics arose from direct observations and is currently undergoing rapid changes, making the amount of available data ever greater. Thus, the two disciplines are disparate both in their origins and their current states, yet they address the same fundamental question: how does the genotype affect the phenotype? The rapidly accumulating genomic data necessitate sophisticated analysis, but many of the current tools are adaptations of methods designed during the early days of quantitative genetics. We argue here that the present analysis paradigm in quantitative genetics is at its limits in regards to unraveling complex traits and it is necessary to re-evaluate the direction that genetic research is taking for the field to realize its full potential.


Asunto(s)
Genética , Alelos , Epigénesis Genética , Epistasis Genética , Evolución Molecular , Heterogeneidad Genética , Estudio de Asociación del Genoma Completo , Modelos Teóricos
17.
Bioinformatics ; 31(23): 3830-1, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249815

RESUMEN

UNLABELLED: High-throughput genotyping and sequencing technologies facilitate studies of complex genetic traits and provide new research opportunities. The increasing popularity of genome-wide association studies (GWAS) leads to the discovery of new associated loci and a better understanding of the genetic architecture underlying not only diseases, but also other monogenic and complex phenotypes. Several softwares are available for performing GWAS analyses, R environment being one of them. RESULTS: We present cgmisc, an R package that enables enhanced data analysis and visualization of results from GWAS. The package contains several utilities and modules that complement and enhance the functionality of the existing software. It also provides several tools for advanced visualization of genomic data and utilizes the power of the R language to aid in preparation of publication-quality figures. Some of the package functions are specific for the domestic dog (Canis familiaris) data. AVAILABILITY AND IMPLEMENTATION: The package is operating system-independent and is available from: https://github.com/cgmisc-team/cgmisc CONTACT: marcin.kierczak@imbim.uu.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Gráficos por Computador , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Programas Informáticos , Animales , Perros , Genotipo , Humanos , Pérdida de Heterocigocidad , Fenotipo
18.
Environ Microbiol ; 17(2): 496-513, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25142400

RESUMEN

Xeromyces bisporus can grow on sugary substrates down to 0.61, an extremely low water activity. Its genome size is approximately 22 Mb. Gene clusters encoding for secondary metabolites were conspicuously absent; secondary metabolites were not detected experimentally. Thus, in its 'dry' but nutrient-rich environment, X. bisporus appears to have relinquished abilities for combative interactions. Elements to sense/signal osmotic stress, e.g. HogA pathway, were present in X. bisporus. However, transcriptomes at optimal (∼ 0.89) versus low aw (0.68) revealed differential expression of only a few stress-related genes; among these, certain (not all) steps for glycerol synthesis were upregulated. Xeromyces bisporus increased glycerol production during hypo- and hyper-osmotic stress, and much of its wet weight comprised water and rinsable solutes; leaked solutes may form a protective slime. Xeromyces bisporus and other food-borne moulds increased membrane fatty acid saturation as water activity decreased. Such modifications did not appear to be transcriptionally regulated in X. bisporus; however, genes modulating sterols, phospholipids and the cell wall were differentially expressed. Xeromyces bisporus was previously proposed to be a 'chaophile', preferring solutes that disorder biomolecular structures. Both X. bisporus and the closely related xerophile, Xerochrysium xerophilum, with low membrane unsaturation indices, could represent a phylogenetic cluster of 'chaophiles'.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Glicerol/metabolismo , Adaptación Fisiológica/genética , Ascomicetos/aislamiento & purificación , Perfilación de la Expresión Génica , Genoma Fúngico/genética , Familia de Multigenes , Presión Osmótica , Filogenia , Agua
19.
PLoS Genet ; 8(8): e1002839, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876191

RESUMEN

The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may, however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the genetic variance heterogeneity.


Asunto(s)
Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/genética , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Bases de Datos Genéticas , Flores/metabolismo , Estudios de Asociación Genética , Sitios Genéticos , Variación Genética , Genotipo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Molibdeno/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Carácter Cuantitativo Heredable , Biología de Sistemas
20.
PLoS Genet ; 7(7): e1002180, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21814519

RESUMEN

Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts, much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects on body weight in an F(2) intercross between these high- and low-body weight lines. Here, most pair-wise interactions in the network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis, provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics underlying a complex trait.


Asunto(s)
Cruzamientos Genéticos , Epistasis Genética , Linaje , Sitios de Carácter Cuantitativo/genética , Animales , Peso Corporal/genética , Pollos , Mapeo Cromosómico , Evolución Molecular , Femenino , Genotipo , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA