Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Blood ; 141(12): 1457-1468, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564031

RESUMEN

von Willebrand factor (VWF) is a multimeric protein, the size of which is regulated via ADAMTS13-mediated proteolysis within the A2 domain. We aimed to isolate nanobodies distinguishing between proteolyzed and non-proteolyzed VWF, leading to the identification of a nanobody (designated KB-VWF-D3.1) targeting the A3 domain, the epitope of which overlaps the collagen-binding site. Although KB-VWF-D3.1 binds with similar efficiency to dimeric and multimeric derivatives of VWF, binding to VWF was lost upon proteolysis by ADAMTS13, suggesting that proteolysis in the A2 domain modulates exposure of its epitope in the A3 domain. We therefore used KB-VWF-D3.1 to monitor VWF degradation in plasma samples. Spiking experiments showed that a loss of 10% intact VWF could be detected using this nanobody. By comparing plasma from volunteers to that from congenital von Willebrand disease (VWD) patients, intact-VWF levels were significantly reduced for all VWD types, and most severely in VWD type 2A-group 2, in which mutations promote ADAMTS13-mediated proteolysis. Unexpectedly, we also observed increased proteolysis in some patients with VWD type 1 and VWD type 2M. A significant correlation (r = 0.51, P < .0001) between the relative amount of high-molecular weight multimers and levels of intact VWF was observed. Reduced levels of intact VWF were further found in plasmas from patients with severe aortic stenosis and patients receiving mechanical circulatory support. KB-VWF-D3.1 is thus a nanobody that detects changes in the exposure of its epitope within the collagen-binding site of the A3 domain. In view of its unique characteristics, it has the potential to be used as a diagnostic tool to investigate whether a loss of larger multimers is due to ADAMTS13-mediated proteolysis.


Asunto(s)
Enfermedad de von Willebrand Tipo 2 , Enfermedades de von Willebrand , Humanos , Factor de von Willebrand/metabolismo , Enfermedades de von Willebrand/genética , Proteolisis , Enfermedad de von Willebrand Tipo 2/diagnóstico , Colágeno , Epítopos/metabolismo , Proteína ADAMTS13/metabolismo
2.
Blood ; 136(6): 740-748, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32369559

RESUMEN

The bispecific antibody emicizumab is increasingly used for hemophilia A treatment. However, its specificity for human factors IX and X (FIX and FX) has limited its in vivo functional analysis to primate models of acquired hemophilia. Here, we describe a novel mouse model that allows emicizumab function to be examined. Briefly, FVIII-deficient mice received IV emicizumab 24 hours before tail-clip bleeding was performed. A second infusion with human FIX and FX, administered 5 minutes before bleeding, generated consistent levels of emicizumab (0.7-19 mg/dL for 0.5-10 mg/kg doses) and of both FIX and FX (85 and 101 U/dL, respectively, after dosing at 100 U/kg). Plasma from these mice display FVIII-like activity in assays (diluted activated partial thromboplastin time and thrombin generation), similar to human samples containing emicizumab. Emicizumab doses of 1.5 mg/kg and higher significantly reduced blood loss in a tail-clip-bleeding model using FVIII-deficient mice. However, reduction was incomplete compared with mice treated with human FVIII concentrate, and no difference in efficacy between doses was observed. From this model, we deducted FVIII-like activity from emicizumab that corresponded to a dose of 4.5 U of FVIII per kilogram (ie, 9.0 U/dL). Interestingly, combined with a low FVIII dose (5 U/kg), emicizumab provided enough additive activity to allow complete bleeding arrest. This model could be useful for further in vivo analysis of emicizumab.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Factor IX/administración & dosificación , Factor X/administración & dosificación , Hemofilia A/tratamiento farmacológico , Hemorragia/tratamiento farmacológico , Modelos Animales , Animales , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/inmunología , Quimioterapia Combinada , Factor IX/análisis , Factor IX/inmunología , Factor VIII/administración & dosificación , Factor VIII/análisis , Factor VIII/uso terapéutico , Factor X/análisis , Factor X/inmunología , Factor XIa/farmacología , Femenino , Hemofilia A/sangre , Hemofilia A/complicaciones , Hemofilia A/inmunología , Hemorragia/etiología , Infusiones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tiempo de Tromboplastina Parcial , Cola (estructura animal)/lesiones , Trombina/biosíntesis
3.
Cell Immunol ; 325: 64-68, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29395036

RESUMEN

The development of antibodies against therapeutic factor VIII (FVIII) represents the major complication of replacement therapy in patients with severe hemophilia A. Amongst the environmental risk factors that influence the anti-FVIII immune response, the presence of active bleeding or hemarthrosis has been evoked. Endothelium damage is typically associated with the release of oxidative compounds. Here, we addressed whether oxidation contributes to FVIII immunogenicity. The control with N-acetyl cysteine of the oxidative status in FVIII-deficient mice, a model of severe hemophilia A, reduced the immune response to exogenous FVIII. Ex vivo exposure of therapeutic FVIII to HOCl induced a mild oxidation of the molecule as evidenced by the loss of free amines and resulted in increased FVIII immunogenicity in vivo when compared to native FVIII. The increased immunogenicity of oxidized FVIII was not reverted by treatment of mice with N-acetyl cysteine, and did not implicate an increased maturation of professional antigen-presenting cells. Our data document that oxidation influences the immunogenicity of therapeutic FVIII.


Asunto(s)
Factor VIII/inmunología , Hemofilia A/inmunología , Hemofilia A/metabolismo , Acetilcisteína/farmacología , Animales , Anticuerpos/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Modelos Animales de Enfermedad , Factor VIII/metabolismo , Factor VIII/farmacología , Hemofilia A/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo/inmunología
4.
Cell Immunol ; 331: 22-29, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29751951

RESUMEN

Hemophilia A is a X-linked recessive bleeding disorder consecutive to the lack of circulating pro-coagulant factor VIII (FVIII). The most efficient strategy to treat or prevent bleeding in patients with hemophilia A relies on replacement therapy using exogenous FVIII. Commercially available recombinant FVIII are produced using an expensive perfusion technology in stainless steel fermenters. A fed-batch fermentation technology was recently developed to produce 'Neureight', a full-length recombinant human FVIII, in Chinese hamster ovary (CHO) cells. Here, we investigated the structural and functional integrity and lack of increased immunogenicity of Neureight, as compared to two commercially available full-length FVIII products, Helixate and Advate, produced in baby hamster kidney or CHO cells, respectively. Our results demonstrate the purity, stability and functional integrity of Neureight with a standard specific activity of 4235 ±â€¯556 IU/mg. The glycosylation and sulfation profiles of Neureight were similar to that of Advate, with the absence of the antigenic carbohydrate epitopes α-Gal and Neu5Gc, and with sulfation of Y1680, that is critical for FVIII binding to von Willebrand factor (VWF). The endocytosis of Neureight by human immature dendritic cells was inhibited by VWF, and its half-life in FVIII-deficient mice was similar to that of Advate, confirming unaltered binding to VWF. In vitro and in vivo assays indicated a similar immunogenicity for Neureight, Advate and Helixate. In conclusion, the production of full-length FVIII in a fed-batch fermentation mode generates a product that presents similar biochemical, functional and immunogenic properties as products developed using the classical perfusion technology.


Asunto(s)
Reactores Biológicos , Factor VIII/inmunología , Hemofilia A/inmunología , Proteínas Recombinantes/inmunología , Animales , Células CHO , Cricetinae , Cricetulus , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endocitosis/inmunología , Factor VIII/genética , Factor VIII/metabolismo , Fermentación , Hemofilia A/tratamiento farmacológico , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico
5.
Haematologica ; 103(1): 172-178, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025906

RESUMEN

The development of anti-factor VIII antibodies is a major complication of the treatment of patients with hemophilia A. Generation of high affinity anti-factor VIII antibodies is dependent on help provided by CD4+ T cells that recognize factor VIII-derived peptides presented on class II major histocompatibility complex on the surface of antigen-presenting cells. In order to identify the immune-dominant epitopes that can be presented to CD4+ T cells, we previously developed a mass spectrometry-based method to identify factor VIII-derived peptides that are presented on human leukocyte antigen (HLA)-DR. In the present work, we compared the repertoire of FVIII-derived peptide presented on HLA-DR and HLA-DQ. Monocyte-derived dendritic cells from nine HLA-typed healthy donors were pulsed with recombinant factor VIII. HLA-DR and HLA-DQ molecules were purified using monoclonal antibodies. Our data show that HLA-DQ and HLA-DR present a similar repertoire of factor VIII-derived peptides. However, the number of peptides associated with HLA-DQ was lower than that with HLA-DR. We also identified a peptide, within the acidic a3 domains of factor VIII, which is presented with higher frequency on HLA-DQ. Interestingly, this peptide was found to have a higher predicted affinity for HLA-DQ than for HLA-DR. Taken together, our data suggest that HLA-DQ participates in the presentation of factor VIII peptides, thereby contributing to the development of inhibitory antibodies in a proportion of patients with severe hemophilia A.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factor VIII/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Péptidos/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Factor VIII/química , Perfilación de la Expresión Génica , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Hemofilia A/genética , Hemofilia A/inmunología , Humanos , Proteoma , Proteómica/métodos
6.
Haematologica ; 103(2): 351-360, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29146705

RESUMEN

Development of neutralizing antibodies against therapeutic Factor VIII (FVIII) is the most serious complication of the treatment of hemophilia A. There is growing evidence to show the multifactorial origin of the anti-FVIII immune response, combining both genetic and environmental factors. While a role for the complement system on innate as well as adaptive immunity has been documented, the implication of complement activation on the onset of the anti-FVIII immune response is unknown. Here, using in vitro assays for FVIII endocytosis by human monocyte-derived dendritic cells and presentation to T cells, as well as in vivo complement depletion in FVIII-deficient mice, we show a novel role for complement C3 in enhancing the immune response against therapeutic FVIII. In vitro, complement C3 and its cleavage product C3b enhanced FVIII endocytosis by dendritic cells and presentation to a FVIII-specific CD4+ T-cell hybridoma. The C1 domain of FVIII had previously been shown to play an important role in FVIII endocytosis, and alanine substitutions of the K2092, F2093 and R2090 C1 residues drastically reduce FVIII uptake in vitro Interestingly, complement activation rescued the endocytosis of the FVIII C1 domain triple mutant. In a mouse model of severe hemophilia A, transient complement C3 depletion by humanized cobra venom factor, which does not generate anaphylatoxin C5a, significantly reduced the primary anti-FVIII immune response, but did not affect anti-FVIII recall immune responses. Taken together, our results suggest an important adjuvant role for the complement cascade in the initiation of the immune response to therapeutic FVIII.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Complemento C3/farmacología , Factor VIII/inmunología , Animales , Presentación de Antígeno/inmunología , Activación de Complemento , Células Dendríticas/fisiología , Endocitosis/efectos de los fármacos , Humanos , Inmunidad/efectos de los fármacos , Ratones
7.
Haematologica ; 103(6): 1083-1092, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29567779

RESUMEN

Formation of microthrombi is a hallmark of acquired thrombotic thrombocytopenic purpura. These microthrombi originate from insufficient processing of ultra large von Willebrand factor multimers by ADAMTS13 due to the development of anti-ADAMTS13 autoantibodies. Several studies have identified the major histocompatibility complex class II alleles HLA-DRB1*11, HLA-DQB1*03 and HLA-DQB1*02:02 as risk factors for acquired thrombotic thrombocytopenic purpura development. Previous research in our department indicated that ADAMTS13 CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR are presented on HLA-DRB1*11 and HLA-DRB1*03, respectively. Here, we describe the repertoire of ADAMTS13 peptides presented on HLA-DQ. In parallel, the repertoire of ADAMTS13-derived peptides presented on HLA-DR was monitored. Using HLA-DR- and HLA-DQ-specific antibodies, we purified HLA/peptide complexes from ADAMTS13-pulsed monocyte-derived dendritic cells. Using this approach, we identified ADAMTS13-derived peptides presented on HLA-DR for all 9 samples analyzed; ADAMTS13-derived peptides presented on HLA-DQ were identified in 4 out of 9 samples. We were able to confirm the presentation of the CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR on HLA-DR. In total, 12 different core-peptide sequences were identified on HLA-DR and 8 on HLA-DQ. For HLA-DR11, several potential new core-peptides were found; 4 novel core-peptides were exclusively identified on HLA-DQ. Furthermore, an in silico analysis was performed using the EpiMatrix and JanusMatrix tools to evaluate the eluted peptides, in the context of HLA-DR, for putative effector or regulatory T-cell responses at the population level. The results from this study provide a basis for the identification of immuno-dominant epitopes on ADAMTS13 involved in the onset of acquired thrombotic thrombocytopenic purpura.


Asunto(s)
Proteína ADAMTS13/química , Proteína ADAMTS13/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Espectrometría de Masas , Péptidos/química , Péptidos/inmunología , Proteína ADAMTS13/metabolismo , Animales , Presentación de Antígeno , Células Dendríticas , Mapeo Epitopo/métodos , Genotipo , Células HEK293 , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Espectrometría de Masas/métodos , Ratones , Péptidos/metabolismo , Unión Proteica
8.
J Immunol ; 196(10): 4075-81, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27067006

RESUMEN

Renal transplant is the treatment of choice for patients with terminal end-stage renal disease. We have previously identified low levels of catalytic IgG as a potential prognosis marker for chronic allograft rejection. The origin and physiopathological relevance of catalytic Abs is not well understood, owing to the fact that catalytic Abs have been studied in relatively small cohorts of patients with rare diseases and/or without systematic follow-up. In the current study, we have followed the evolution of the levels of catalytic IgG in a large cohort of renal transplant patients over a 2-y period. Our results demonstrate that, prior to transplant, patients with renal failure present with heterogeneous levels of IgG hydrolyzing the generic proline-phenylalanine-arginine-methylcoumarinamide (PFR-MCA) substrate. PFR-MCA hydrolysis was greater for patients' IgG than for a therapeutic preparation of pooled IgG from healthy donors. Renal transplant was marked by a drastic decrease in levels of catalytic IgG over 3 mo followed by a steady increase during the next 21 mo. Patients who displayed high levels of catalytic IgG pretransplant recovered high levels of catalytic Abs 2 y posttransplant. Interestingly, IgG-mediated hydrolysis of a model protein substrate, procoagulant factor VIII, did not correlate with that of PFR-MCA prior transplantation, whereas it did 12 mo posttransplant. Taken together, our results suggest that the level of circulating catalytic IgG under pathological conditions is an intrinsic property of each individual's immune system and that recovery of pretransplant levels of catalytic IgG is accompanied by changes in the repertoire of target Ags.


Asunto(s)
Biomarcadores/metabolismo , Rechazo de Injerto/inmunología , Sistema Inmunológico , Inmunoglobulina G/metabolismo , Trasplante de Riñón , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Catalíticos , Autoanticuerpos/metabolismo , Coagulación Sanguínea , Enfermedad Crónica , Factor VIII/metabolismo , Femenino , Estudios de Seguimiento , Rechazo de Injerto/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Receptores de Trasplantes , Adulto Joven
9.
Haematologica ; 102(2): 271-281, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27758819

RESUMEN

The development of inhibitory antibodies to therapeutic factor VIII is the major complication of replacement therapy in patients with hemophilia A. The first step in the initiation of the anti-factor VIII immune response is factor VIII interaction with receptor(s) on antigen-presenting cells, followed by endocytosis and presentation to naïve CD4+ T cells. Recent studies indicate a role for the C1 domain in factor VIII uptake. We investigated whether charged residues in the C2 domain participate in immunogenic factor VIII uptake. Co-incubation of factor VIII with BO2C11, a monoclonal C2-specific immunoglobulin G, reduced factor VIII endocytosis by dendritic cells and presentation to CD4+ T cells, and diminished factor VIII immunogenicity in factor VIII-deficient mice. The mutation of basic residues within the BO2C11 epitope of C2 replicated reduced in vitro immunogenic uptake, but failed to prevent factor VIII immunogenicity in mice. BO2C11 prevents factor VIII binding to von Willebrand factor, thus potentially biasing factor VIII immunogenicity by perturbing its half-life. Interestingly, a factor VIIIY1680C mutant, that does not bind von Willebrand factor, demonstrated unaltered endocytosis by dendritic cells as well as immunogenicity in factor VIII-deficient mice. Co-incubation of factor VIIIY1680C with BO2C11, however, resulted in decreased factor VIII immunogenicity in vivo In addition, a previously described triple C1 mutant showed decreased uptake in vitro, and reduced immunogenicity in vivo, but only in the absence of endogenous von Willebrand factor. Taken together, the results indicate that residues in the C1 and/or C2 domains of factor VIII are implicated in immunogenic factor VIII uptake, at least in vitro Conversely, in vivo, the binding to endogenous von Willebrand factor masks the reducing effect of mutations in the C domains on factor VIII immunogenicity.


Asunto(s)
Dominios C2 , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endocitosis/inmunología , Factor VIII/inmunología , Factor VIII/metabolismo , Dominios Proteicos , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Factor VIII/química , Factor VIII/genética , Técnicas de Inactivación de Genes , Hemofilia A/genética , Hemofilia A/inmunología , Hemofilia A/metabolismo , Humanos , Activación de Linfocitos/inmunología , Ratones , Mutación , Unión Proteica , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factor de von Willebrand/metabolismo
10.
Haematologica ; 102(11): 1833-1841, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28751567

RESUMEN

Acquired thrombotic thrombocytopenic purpura is a rare and severe disease characterized by auto-antibodies directed against "A Disintegrin And Metalloproteinase with Thrombospondin type 1 repeats, 13th member" (ADAMTS13), a plasma protein involved in hemostasis. Involvement of CD4+ T cells in the pathogenesis of the disease is suggested by the IgG isotype of the antibodies. However, the nature of the CD4+ T-cell epitopes remains poorly characterized. Here, we determined the HLA-DR-restricted CD4+ T-cell epitopes of ADAMTS13. Candidate T-cell epitopes were predicted in silico and binding affinities were confirmed in competitive enzyme-linked immunosorbent assays. ADAMTS13-reactive CD4+ T-cell hybridomas were generated following immunization of HLA-DR1 transgenic mice (Sure-L1 strain) and used to screen the candidate epitopes. We identified the ADAMTS131239-1253 peptide as the single immunodominant HLA-DR1-restricted CD4+ T-cell epitope. This peptide is located in the CUB2 domain of ADAMTS13. It was processed by dendritic cells, stimulated CD4+ T cells from Sure-L1 mice and was recognized by CD4+ T cells from an HLA-DR1-positive patient with acute thrombotic thrombocytopenic purpura. Interestingly, the ADAMTS131239-1253 peptide demonstrated promiscuity towards HLA-DR11 and HLA-DR15. Our work paves the way towards the characterization of the ADAMTS13-specific CD4+ T-cell response in patients with thrombotic thrombocytopenic purpura using ADAMTS131239-1253-loaded HLA-DR tetramers.


Asunto(s)
Proteína ADAMTS13/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-DR1/inmunología , Epítopos Inmunodominantes/inmunología , Fragmentos de Péptidos/inmunología , Proteína ADAMTS13/química , Alelos , Secuencia de Aminoácidos , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Epítopos de Linfocito T/química , Antígeno HLA-DR1/química , Antígeno HLA-DR1/metabolismo , Humanos , Inmunización , Epítopos Inmunodominantes/química , Inmunoglobulina G/inmunología , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica/inmunología , Púrpura Trombocitopénica Trombótica/genética , Púrpura Trombocitopénica Trombótica/inmunología , Púrpura Trombocitopénica Trombótica/metabolismo
11.
Cell Immunol ; 301: 59-64, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26610639

RESUMEN

Major histocompatibility complex class II (MHCII)-restricted peptide presentation is crucial for the selection and subsequent proliferation of antigen specific CD4+ T cells. While selection of antigen-specific CD4+ T cells is beneficial in the context of vaccination, emergence of antigen CD4+ T cells following administration of therapeutic proteins like factor VIII (FVIII) is not desirable. The mechanism of uptake, processing and presentation of FVIII by antigen-presenting cells (APCs) has been the subject of intense study over the past 10 years. Multiple receptors have been implicated in the uptake of FVIII by APCs. A crucial determinant directing its entry in APCs resides in the C1 domain of FVIII. Until recently, our knowledge on the repertoire of FVIII derived presented on MHCII was limited. Peptide sequences on FVIII recognized by CD4+ T cells have been identified using MHCII tetramers as well as by directly monitoring peptide-induced proliferation of CD4+ T cells. More recently, the repertoire of naturally presented peptides derived from FVIII has been identified by pulsing of immature dendritic cells with FVIII. In a complementary approach HLA-DRB1(∗)15 transgenic mice were used to identify HLA-DRB1(∗)15 restricted CD4+ T cells reactive towards human FVIII. In this review we summarize our current knowledge on FVIII derived peptides that are presented on MHCII and discuss the relevance of these findings for the etiology of inhibitor development in patients with hemophilia A.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Factor VIII/inmunología , Hemofilia A/inmunología , Activación de Linfocitos/inmunología , Animales , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Péptidos/inmunología , Proteoma/inmunología
13.
Haematologica ; 98(10): 1650-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23716558

RESUMEN

Induction of heme oxygenase-1, a stress-inducible enzyme with anti-inflammatory activity, reduces the immunogenicity of therapeutic factor VIII in experimental hemophilia A. In humans, heme oxygenase-1 expression is modulated by polymorphisms in the promoter of the heme oxygenase-1-encoding gene (HMOX1). We investigated the relationship between polymorphisms in the HMOX1 promoter and factor VIII inhibitor development in severe hemophilia A. We performed a case-control study on 99 inhibitor-positive patients and 263 patients who did not develop inhibitors within the first 150 cumulative days of exposure to therapeutic factor VIII. Direct sequencing and DNA fragment analysis were used to study (GT)n polymorphism and single nucleotide polymorphisms located at -1135 and -413 in the promoter of HMOX1. We assessed associations between the individual allele frequencies or genotypes, and inhibitor development. Our results demonstrate that inhibitor-positive patients had a higher frequency of alleles with large (GT)n repeats (L: n≥30), which are associated with lesser heme oxygenase-1 expression (odds ratio 2.31; 95% confidence interval 1.46-3.66; P<0.001]. Six genotypes (L/L, L/M, L/S, M/M, M/S and S/S) of (GT)n repeats were identified (S: n<21; M: 21≤n<30). The genotype group including L alleles (L/L, L/M and L/S) was statistically more frequent among inhibitor-positive than inhibitor-negative patients, as compared to the other genotypes (33.3% versus 17.1%) (odds ratio 2.21, 95% confidence interval 1.30-3.76; P<0.01). To our knowledge, this is the first association identified between HMOX1 promoter polymorphism and development of anti-drug antibodies. Our study paves the way towards modulation of the endogenous anti-inflammatory machinery of hemophilia patients to reduce the risk of inhibitor development.


Asunto(s)
Factor VIII/uso terapéutico , Hemo-Oxigenasa 1/genética , Hemofilia A/genética , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Anticuerpos/sangre , Estudios de Casos y Controles , Hemofilia A/sangre , Hemofilia A/tratamiento farmacológico , Humanos , Índice de Severidad de la Enfermedad
14.
J Thromb Haemost ; 21(10): 2776-2783, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473843

RESUMEN

BACKGROUND: Emicizumab is a bispecific, chimeric, humanized immunoglobulin G (IgG)4 that mimics the procoagulant activity of factor (F) VIII (FVIII). Its long half-life and subcutaneous route of administration have been life-changing in treating patients with hemophilia A (HA) with or without FVIII inhibitors. However, emicizumab only partially mimics FVIII activity; it prevents but does not treat acute bleeds. Emergency management is particularly complicated in patients with FVIII inhibitors receiving emicizumab prophylaxis in whom exogenous FVIII is inefficient. We have shown recently that Imlifidase (IdeS), a bacterial IgG-degrading enzyme, efficiently eliminates human anti-FVIII IgG in a mouse model of severe HA with inhibitors and opens a therapeutic window for the administration of exogenous FVIII. OBJECTIVES: To investigate the impact of IdeS treatment in inhibitor-positive HA mice injected with emicizumab. METHODS: IdeS was injected to HA mice reconstituted with human neutralizing anti-FVIII IgG and treated with emicizumab. RESULTS: IdeS hydrolyzed emicizumab in vitro and in vivo, albeit, at slower rates than another recombinant human monoclonal IgG4. While F(ab')2 fragments were rapidly cleared from the circulation, thus leading to a rapid loss of emicizumab procoagulant activity, low amounts of single-cleaved intermediate IgG persisted for several days. Moreover, the IdeS-mediated elimination of the neutralizing anti-FVIII IgG and restoration of the hemostatic efficacy of exogenous FVIII were not impaired by the presence of emicizumab and polyclonal human IgG in inhibitor-positive HA mice. CONCLUSION: Our results suggest that IdeS could be administered to inhibitor-positive patients with HA receiving emicizumab prophylaxis to improve and ease the management of breakthrough bleeds or programmed major surgeries.


Asunto(s)
Anticuerpos Biespecíficos , Hemofilia A , Humanos , Animales , Ratones , Hemofilia A/tratamiento farmacológico , Factor VIII/uso terapéutico , Anticuerpos Biespecíficos/uso terapéutico , Hemorragia/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Inmunoglobulina G
15.
J Thromb Haemost ; 21(9): 2405-2417, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271431

RESUMEN

BACKGROUND: Transplacental delivery of maternal immunoglobulin G (IgG) provides humoral protection during the first months of life until the newborn's immune system reaches maturity. The maternofetal interface has been exploited therapeutically to replace missing enzymes in the fetus, as shown in experimental mucopolysaccharidoses, or to shape adaptive immune repertoires during fetal development and induce tolerance to self-antigens or immunogenic therapeutic molecules. OBJECTIVES: To investigate whether proteins that are administered to pregnant mice or endogenously present in their circulation may be delivered through the placenta. METHODS: We engineered monovalent immunoglobulin G (FabFc) specific for different domains of human factor VIII (FVIII), a therapeutically relevant model antigen. FabFc was injected with exogenous FVIII into pregnant severe hemophilia A mice or pregnant mice expressing human FVIII following AAV8-mediated gene therapy. FabFc and FVIII were detected in the pregnant mice and/or fetuses by enzyme-linked immunosorbent assay and immunohistochemistry. RESULTS: Administration of FabFc to pregnant mice allowed the maternofetal delivery of FVIII in a FcRn-dependent manner. FVIII antigen levels achieved in the fetuses represented 10% of normal plasma levels in the human. We identified antigen/FabFc complex stability, antigen size, and shielding of promiscuous protein patches as key parameters to foster optimal antigen delivery. CONCLUSION: Our results pave the way toward the development of novel strategies for the in utero delivery of endogenous maternal proteins to replace genetically deficient fetal proteins or to educate the immune system and favor active immune tolerance upon protein encounter later in life.


Asunto(s)
Hemofilia A , Inmunoglobulina G , Embarazo , Femenino , Ratones , Humanos , Animales , Factor VIII , Hemofilia A/genética , Hemofilia A/terapia , Placenta , Terapia Genética , Tolerancia Inmunológica
16.
J Thromb Haemost ; 20(7): 1653-1664, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445541

RESUMEN

BACKGROUND: Protein S (PS) is a natural anticoagulant acting as a cofactor for activated protein C (APC) in the proteolytic inactivation of activated factors V (FVa) and VIII (FVIIIa), but also for tissue factor pathway inhibitor α (TFPIα) in the inhibition of activated factor X (FXa). OBJECTIVE: For therapeutic purposes, we aimed at generating single-domain antibodies (sdAbs) that could specifically modulate the APC-cofactor activity of PS in vivo. METHODS: A llama-derived immune library of sdAbs was generated and screened on recombinant human PS by phage display. PS binders were tested in a global activated partial thromboplastin time (APTT)-based APC-cofactor activity assay. RESULTS: A PS-specific sdAb (PS003) was found to enhance the APC-cofactor activity of PS in our APTT-based assay, and this enhancing effect was greater for a bivalent form of PS003 (PS003biv). Further characterization of PS003biv demonstrated that PS003biv also enhanced the APC-cofactor activity of PS in a tissue factor (TF)-induced thrombin generation assay and stimulated APC in the inactivation of FVa, but not FVIIIa, in plasma-based assays. Furthermore, PS003biv was directed against the sex hormone-binding globulin (SHBG)-like domain but did not inhibit the binding of PS to C4b-binding protein (C4BP) and did not interfere with the TFPIα-cofactor activity of PS. In mice, PS003biv exerted an antithrombotic effect in a FeCl3 -induced thrombosis model, while not affecting physiological hemostasis in a tail-clip bleeding model. DISCUSSION: Altogether, these results showed that pharmacological enhancement of the APC-cofactor activity of PS through an original anti-PS sdAb might constitute a promising and safe antithrombotic strategy.


Asunto(s)
Proteína S , Anticuerpos de Dominio Único , Animales , Factor VIIIa/química , Fibrinolíticos/farmacología , Humanos , Ratones , Proteína C/metabolismo , Proteína S/metabolismo
17.
Res Pract Thromb Haemost ; 6(4): e12737, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35734101

RESUMEN

Background: Von Willebrand disease was diagnosed in two Afro-Caribbean patients and sequencing of the VWF gene (VWF) revealed the presence of multiple variants located throughout the gene, including variants located in the D4 domain of VWF: p.(Pro2145Thrfs*5) in one patient and p.(Cys2216Phefs*9) in the other patient. Interestingly, D4 variants have not been studied often. Objectives: Our goal was to characterize how the D4 variants p.(Pro2145Thrfs*5) and p.(Cys2216Phefs*9) influenced VWF biosynthesis/secretion and functions using in vitro assays. Methods: Recombinant VWF (rVWF), mutant or wild-type, was produced via transient transfection of the human embryonic kidney cell line 293T. The use of different tags for the wild-type and the mutant allele allowed us to distinguish between the two forms when measuring VWF antigen in medium and cell lysates. Binding of rVWF to its ligands, collagen, factor VIII, ADAMTS13, and platelet receptors was also investigated. Results: Homozygous expression of the p.(Cys2216Phefs*9)-rVWF mutation resulted in an almost complete intracellular retention of the protein. Heterozygous expression led to secretion of almost exclusively wild-type-rVWF, logically capable of normal interaction with the different ligands. In contrast, the p.(Pro2145Thrfs*5)-rVWF exhibited reduced binding to type III collagen and αIIbß3 integrin compared to wild-type-rVWF. Conclusions: We report two mutations of the D4 domains that induced combined qualitative and quantitative defects.

18.
Front Immunol ; 11: 810, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477339

RESUMEN

In humans, maternal IgGs are transferred to the fetus from the second trimester of pregnancy onwards. The transplacental delivery of maternal IgG is mediated by its binding to the neonatal Fc receptor (FcRn) after endocytosis by the syncytiotrophoblast. IgGs present in the maternal milk are also transferred to the newborn through the digestive epithelium upon binding to the FcRn. Importantly, the binding of IgGs to the FcRn is also responsible for the recycling of circulating IgGs that confers them with a long half-life. Maternally delivered IgG provides passive immunity to the newborn, for instance by conferring protective anti-flu or anti-pertussis toxin IgGs. It may, however, lead to the development of autoimmune manifestations when pathological autoantibodies from the mother cross the placenta and reach the circulation of the fetus. In recent years, strategies that exploit the transplacental delivery of antigen/IgG complexes or of Fc-fused proteins have been validated in mouse models of human diseases to impose antigen-specific tolerance, particularly in the case of Fc-fused factor VIII (FVIII) domains in hemophilia A mice or pre-pro-insulin (PPI) in the case of preclinical models of type 1 diabetes (T1D). The present review summarizes the mechanisms underlying the FcRn-mediated transcytosis of IgGs, the physiopathological relevance of this phenomenon, and the repercussion for drug delivery and shaping of the immune system during its ontogeny.


Asunto(s)
Antígenos/inmunología , Tolerancia Inmunológica , Intercambio Materno-Fetal/inmunología , Animales , Autoanticuerpos/metabolismo , Femenino , Feto/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Sistema Inmunológico/embriología , Sistema Inmunológico/metabolismo , Inmunoglobulina G/metabolismo , Ratones , Placenta/inmunología , Embarazo , Transporte de Proteínas/inmunología , Receptores Fc/metabolismo , Transcitosis/inmunología
19.
Res Pract Thromb Haemost ; 4(7): 1087-1110, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134775

RESUMEN

Hemostasis is a complex process involving the concerted action of molecular and vascular components. Its basic understanding as well as diagnostic and therapeutic aspects have greatly benefited from the use of monoclonal antibodies. Interestingly, camelid-derived single-domain antibodies (sdAbs), also known as VHH or nanobodies, have become available during the previous 2 decades as alternative tools in this regard. Compared to classic antibodies, sdAbs are easier to produce and their small size facilitates their engineering and functionalization. It is not surprising, therefore, that sdAbs are increasingly used in hemostasis-related research. In addition, they have the capacity to recognize unique epitopes unavailable to full monoclonal antibodies. This property can be used to develop novel diagnostic tests identifying conformational variants of hemostatic proteins. Examples include sdAbs that bind active but not globular von Willebrand factor or free factor VIIa but not tissue factor-bound factor VIIa. Finally, sdAbs have a high therapeutic potential, exemplified by caplacizumab, a homodimeric sdAb targeting von Willebrand factor that is approved for the treatment of thrombotic thrombocytopenic purpura. In this review, the various applications of sdAbs in thrombosis and hemostasis-related research, diagnostics, and therapeutic strategies will be discussed.

20.
Front Immunol ; 9: 1251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951051

RESUMEN

Platelet transfusion can elicit alloimmune responses leading to alloantibody formation against donor-specific polymorphic residues, ultimately resulting in platelet transfusion refractoriness. Universal leukoreduction significantly reduced the frequency of alloimmunization after platelet transfusion, thereby showing the importance of white blood cells (WBCs) in inducing this alloresponse. It is, however, unknown if the residual risk for alloimmunization is caused by WBCs remaining after leukoreduction or if alloimmunization can be induced by platelets themselves. This study investigated the capacity of platelets to induce alloimmunization and identified potential product-related risk factors for alloimmunization. First, internalization of allogeneic platelets by dendritic cells (DCs) was demonstrated by confocal microscopy. Second, after internalization, presentation of platelet-derived peptides was shown by mass spectrometry analysis of human leukocytes antigen (HLA)-DR eluted peptides. Third, platelet-loaded DCs induced platelet-specific CD4 T cell responses. Altogether, this indicates a platelet-specific ability to induce alloimmunization. Therefore, factors enhancing platelet internalization may be identified as risk factor for alloimmunization by platelet concentrates. To investigate if storage of platelets is such a risk factor, internalization of stored platelets was compared with fresh platelets and showed enhanced internalization of stored platelets. Storage-induced apoptosis and accompanied phosphatidylserine exposure seemed to be instrumental for this. Indeed, DCs pre-incubated with apoptotic platelets induced the strongest IFN-γ production by CD4 T cells compared with pre-incubation with untreated or activated platelets. In conclusion, this study shows the capacity of platelets to induce platelet-specific alloimmune responses. Furthermore, storage-induced apoptosis of platelets is identified as potential risk factor for alloimmunization after platelet transfusions.


Asunto(s)
Apoptosis , Plaquetas/inmunología , Plaquetas/metabolismo , Inmunización , Transfusión de Plaquetas/efectos adversos , Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Isoanticuerpos/inmunología , Fagocitosis/inmunología , Factores de Riesgo , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA