RESUMEN
In mammalian somatic cells, the relative contribution of RNAi and the type I interferon response during viral infection is unclear. The apparent inefficiency of antiviral RNAi might be due to self-limiting properties and mitigating co-factors of the key enzyme Dicer. In particular, the helicase domain of human Dicer appears to be an important restriction factor of its activity. Here, we study the involvement of several helicase-truncated mutants of human Dicer in the antiviral response. All deletion mutants display a PKR-dependent antiviral phenotype against certain viruses, and one of them, Dicer N1, acts in a completely RNAi-independent manner. Transcriptomic analyses show that many genes from the interferon and inflammatory response pathways are upregulated in Dicer N1 expressing cells. We show that some of these genes are controlled by NF-kB and that blocking this pathway abrogates the antiviral phenotype of Dicer N1. Our findings highlight the crosstalk between Dicer, PKR, and the NF-kB pathway, and suggest that human Dicer may have repurposed its helicase domain to prevent basal activation of antiviral and inflammatory pathways.
Asunto(s)
ARN Helicasas DEAD-box , Interferón Tipo I , FN-kappa B , Infecciones por Virus ARN , Ribonucleasa III , Animales , Humanos , FN-kappa B/genética , Interferencia de ARN , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Infecciones por Virus ARN/enzimologíaRESUMEN
While Dicer plays an important antiviral role through the RNAi pathway in plants and invertebrates, its contribution to antiviral immunity in vertebrates and more specifically mammals is more controversial. The apparent limited RNAi activity in mammalian cells has been attributed to the reduced long dsRNA processive activity of mammalian Dicer, as well as a functional incompatibility between the RNAi and IFN pathways. Why Dicer has lost this antiviral activity in the profit of the IFN pathway is still unclear. We propose that the primary direct antiviral activity of Dicer has been functionally replaced by other sensors in the IFN pathway, leading to its specialization toward microRNA maturation. As a result, Dicer can regulate the innate immune response and prevent basal activation of the IFN pathway in mammals. Here, we discuss this hypothesis, highlighting how the adaptation of the helicase domain of mammalian Dicer may be key to this process.
Asunto(s)
Inmunidad Innata , Interferencia de ARN , ARN Bicatenario , Ribonucleasa III , Animales , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Interferones/metabolismo , Interferones/genética , Interferones/inmunología , Mamíferos/metabolismo , Mamíferos/inmunología , MicroARNs/metabolismo , MicroARNs/genética , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , ARN Bicatenario/metabolismo , ARN Bicatenario/genéticaRESUMEN
Viruses are obligate intracellular parasites, which depend on the host cellular machineries to replicate their genome and complete their infectious cycle. Long double-stranded (ds)RNA is a common viral by-product originating during RNA virus replication and is universally sensed as a danger signal to trigger the antiviral response. As a result, viruses hide dsRNA intermediates into viral replication factories and have evolved strategies to hijack cellular proteins for their benefit. The characterization of the host factors associated with viral dsRNA and involved in viral replication remains a major challenge to develop new antiviral drugs against RNA viruses. Here, we performed anti-dsRNA immunoprecipitation followed by mass spectrometry analysis to fully characterize the dsRNA interactome in Sindbis virus (SINV) infected human cells. Among the identified proteins, we characterized SFPQ (splicing factor, proline-glutamine rich) as a new dsRNA-associated proviral factor upon SINV infection. We showed that SFPQ depletion reduces SINV infection in human HCT116 and SK-N-BE(2) cells, suggesting that SFPQ enhances viral production. We demonstrated that the cytoplasmic fraction of SFPQ partially colocalizes with dsRNA upon SINV infection. In agreement, we proved by RNA-IP that SFPQ can bind dsRNA and viral RNA. Furthermore, we showed that overexpression of a wild-type, but not an RNA binding mutant SFPQ, increased viral infection, suggesting that RNA binding is essential for its positive effect on the virus. Overall, this study provides the community with a compendium of dsRNA-associated factors during viral infection and identifies SFPQ as a new proviral dsRNA binding protein.
Asunto(s)
Virus ARN , ARN Bicatenario , Humanos , ARN Bicatenario/genética , Proteómica , Virus Sindbis/genética , Virus Sindbis/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virus ARN/genética , Replicación Viral/genéticaRESUMEN
CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTß) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTßR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTßR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTßR and RANK with implications for the immune response.
Asunto(s)
Ganglios Linfáticos/inmunología , Receptor beta de Linfotoxina/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Transducción de Señal , Bazo/inmunología , Linfocitos B/inmunología , Ligando RANK/metabolismo , Células del Estroma/metabolismoRESUMEN
Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein-level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double-stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA-induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.
Asunto(s)
Proteínas Argonautas/metabolismo , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Factores Eucarióticos de Iniciación/metabolismo , Interferones/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Bicatenario/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Argonautas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factores Eucarióticos de Iniciación/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Interferones/genética , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/genéticaRESUMEN
Nucleic acids are important biomarkers in cancer and viral diseases. However, their ultralow concentration in biological/clinical samples makes direct target detection challenging, because it leads to slow hybridization kinetics with the probe and its insufficient signal-to-noise ratio. Therefore, RNA target detection is done by molecular (target) amplification, notably by RT-PCR, which is a tedious multistep method that includes nucleic acid extraction and reverse transcription. Here, a direct method based on ultrabright dye-loaded polymeric nanoparticles in a sandwich-like hybridization assay with magnetic beads is reported. The ultrabright DNA-functionalized nanoparticle, equivalent to ≈10â 000 strongly emissive rhodamine dyes, is hybridized with the magnetic bead to the RNA target, providing the signal amplification for the detection. This concept (magneto-fluorescent sandwich) enables high-throughput detection of DNA and RNA sequences of varied lengths from 48 to 1362 nt with the limit of detection down to 0.3 fm using a plate reader (15 zeptomoles), among the best reported for optical sandwich assays. Moreover, it allows semi-quantitative detection of SARS-CoV-2 viral RNA directly in clinical samples without a dedicated RNA extraction step. The developed technology, combining ultrabright nanoparticles with magnetic beads, addresses fundamental challenges in RNA detection; it is expected to accelerate molecular diagnostics of diseases.
RESUMEN
BACKGROUND: RNA helicases are emerging as key factors regulating host-virus interactions. The DEAD-box ATP-dependent RNA helicase DDX5, which plays an important role in many aspects of cellular RNA biology, was also found to either promote or inhibit viral replication upon infection with several RNA viruses. Here, our aim is to examine the impact of DDX5 on Sindbis virus (SINV) infection. METHODS: We analysed the interaction between DDX5 and the viral RNA using imaging and RNA-immunoprecipitation approaches. The interactome of DDX5 in mock- and SINV-infected cells was determined by mass spectrometry. We validated the interaction between DDX17 and the viral capsid by co- immunoprecipitation in the presence or absence of an RNase treatment. We determined the subcellular localization of DDX5, its cofactor DDX17 and the viral capsid protein by co-immunofluorescence. Finally, we investigated the impact of DDX5 depletion and overexpression on SINV infection at the viral protein, RNA and infectious particle accumulation level. The contribution of DDX17 was also tested by knockdown experiments. RESULTS: In this study we demonstrate that DDX5 interacts with the SINV RNA during infection. Furthermore, the proteomic analysis of the DDX5 interactome in mock and SINV-infected HCT116 cells identified new cellular and viral partners and confirmed the interaction between DDX5 and DDX17. Both DDX5 and DDX17 re-localize from the nucleus to the cytoplasm upon SINV infection and interact with the viral capsid protein. We also show that DDX5 depletion negatively impacts the viral replication cycle, while its overexpression has a pro-viral effect. Finally, we observed that DDX17 depletion reduces SINV infection, an effect which is even more pronounced in a DDX5-depleted background, suggesting a synergistic pro-viral effect of the DDX5 and DDX17 proteins on SINV. CONCLUSIONS: These results not only shed light on DDX5 as a novel and important host factor to the SINV life cycle, but also expand our understanding of the roles played by DDX5 and DDX17 as regulators of viral infections.
Asunto(s)
Infecciones por Alphavirus , Proteínas de la Cápside , Humanos , Proteómica , Replicación Viral , ARN , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Virus Sindbis/metabolismoRESUMEN
As obligate intracellular parasites with limited coding capacity, RNA viruses rely on host cells to complete their multiplication cycle. Viral RNAs (vRNAs) are central to infection. They carry all the necessary information for a virus to synthesize its proteins, replicate and spread and could also play essential non-coding roles. Regardless of its origin or tropism, vRNA has by definition evolved in the presence of host RNA Binding Proteins (RBPs), which resulted in intricate and complicated interactions with these factors. While on one hand some host RBPs recognize vRNA as non-self and mobilize host antiviral defenses, vRNA must also co-opt other host RBPs to promote viral infection. Focusing on pathogenic RNA viruses, we will review important scenarios of RBP-vRNA interactions during which host RBPs recognize, modify or degrade vRNAs. We will then focus on how vRNA hijacks the largest ribonucleoprotein complex (RNP) in the cell, the ribosome, to selectively promote the synthesis of its proteins. We will finally reflect on how novel technologies are helping in deepening our understanding of vRNA-host RBPs interactions, which can be ultimately leveraged to combat everlasting viral threats.
Asunto(s)
Virus ARN/genética , ARN Mensajero/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas Virales/genética , Virosis/genética , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Unión Proteica , Biosíntesis de Proteínas , Virus ARN/crecimiento & desarrollo , Virus ARN/patogenicidad , ARN Mensajero/inmunología , ARN Viral/inmunología , Proteínas de Unión al ARN/inmunología , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Ensamble de Virus/genética , Virosis/inmunología , Virosis/patología , Virosis/virologíaRESUMEN
Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no effective treatment is available. DENV relies heavily on the host cellular machinery for productive infection. Here, we show that the scaffold protein RACK1, which is part of the DENV replication complex, mediates infection by binding to the 40S ribosomal subunit. Mass spectrometry analysis of RACK1 partners coupled to an RNA interference screen-identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV genome. Genetic ablation of Vigilin or SERBP1 rendered cells poorly susceptible to DENV, as well as related flaviviruses, by hampering the translation and replication steps. Finally, we established that a Vigilin or SERBP1 mutant lacking RACK1 binding but still interacting with the viral RNA is unable to mediate DENV infection. We propose that RACK1 recruits Vigilin and SERBP1, linking the DENV genome to the translation machinery for efficient infection. IMPORTANCE We recently identified the scaffolding RACK1 protein as an important host-dependency factor for dengue virus (DENV), a positive-stranded RNA virus responsible for the most prevalent mosquito-borne viral disease worldwide. Here, we have performed the first RACK1 interactome in human cells and identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV RNA to regulate viral replication. Importantly, Vigilin and SERBP1 interact with RACK1 and the DENV viral RNA (vRNA) to mediate viral replication. Overall, our results suggest that RACK1 acts as a binding platform at the surface of the 40S ribosomal subunit to recruit Vigilin and SERBP1, which may therefore function as linkers between the viral RNA and the translation machinery to facilitate infection.
Asunto(s)
Virus del Dengue , Dengue , Proteínas de Unión al ARN , Animales , Dengue/fisiopatología , Virus del Dengue/fisiología , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteínas de Neoplasias/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Cinasa C Activada/metabolismo , Replicación ViralRESUMEN
One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA-activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.
Asunto(s)
Inmunidad Innata/inmunología , ARN Helicasas/inmunología , Virosis/inmunología , Animales , HumanosRESUMEN
The antiviral innate immune response mainly involves type I interferon (IFN) in mammalian cells. The contribution of the RNA silencing machinery remains to be established, but several recent studies indicate that the ribonuclease DICER can generate viral siRNAs in specific conditions. It has also been proposed that type I IFN and RNA silencing could be mutually exclusive antiviral responses. In order to decipher the implication of DICER during infection of human cells with alphaviruses such as the Sindbis virus and Semliki forest virus, we determined its interactome by proteomics analysis. We show that DICER specifically interacts with several double-stranded RNA binding proteins and RNA helicases during viral infection. In particular, proteins such as DHX9, ADAR-1 and the protein kinase RNA-activated (PKR) are enriched with DICER in virus-infected cells. We demonstrate that the helicase domain of DICER is essential for this interaction and that its deletion confers antiviral properties to this protein in an RNAi-independent, PKR-dependent, manner.
Asunto(s)
Infecciones por Alphavirus/tratamiento farmacológico , Antivirales/farmacología , ARN Helicasas DEAD-box/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Ribonucleasa III/metabolismo , Virus de los Bosques Semliki/efectos de los fármacos , Replicación Viral , eIF-2 Quinasa/metabolismo , Infecciones por Alphavirus/metabolismo , Infecciones por Alphavirus/patología , ARN Helicasas DEAD-box/genética , Células HEK293 , Humanos , Interferón Tipo I/farmacología , Ribonucleasa III/genética , eIF-2 Quinasa/genéticaRESUMEN
MicroRNAs (miRNAs) are small regulatory RNAs involved in virtually all biological processes. Although many of them are co-expressed from clusters, little is known regarding the impact of this organization on the regulation of their accumulation. In this study, we set to decipher a regulatory mechanism controlling the expression of the ten clustered pre-miRNAs from Kaposi's sarcoma associated herpesvirus (KSHV). We measured in vitro the efficiency of cleavage of each individual pre-miRNA by the Microprocessor and found that pre-miR-K1 and -K3 were the most efficiently cleaved pre-miRNAs. A mutational analysis showed that, in addition to producing mature miRNAs, they are also important for the optimal expression of the whole set of miRNAs. We showed that this feature depends on the presence of a canonical pre-miRNA at this location since we could functionally replace pre-miR-K1 by a heterologous pre-miRNA. Further in vitro processing analysis suggests that the two stem-loops act in cis and that the cluster is cleaved in a sequential manner. Finally, we exploited this characteristic of the cluster to inhibit the expression of the whole set of miRNAs by targeting the pre-miR-K1 with LNA-based antisense oligonucleotides in cells either expressing a synthetic construct or latently infected with KSHV.
Asunto(s)
Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 8/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN/genética , ARN Viral/genética , Línea Celular , Células HEK293 , Humanos , Oligonucleótidos Antisentido/genética , Pliegue del ARN/genéticaRESUMEN
MicroRNAs (miRNAs) are small regulatory RNAs which act by modulating the expression of target genes. In addition to their role in maintaining essential physiological functions in the cell, miRNAs can also regulate viral infections. They can do so directly by targeting RNAs of viral origin or indirectly by targeting host mRNAs, and this can result in a positive or negative outcome for the virus. Here, we performed a fluorescence-based miRNA genome-wide screen in order to identify cellular miRNAs involved in the regulation of arbovirus infection in human cells. We identified 16 miRNAs showing a positive effect on Sindbis virus (SINV) expressing green fluorescent protein (GFP), among which were a number of neuron-specific ones such as miR-124. We confirmed that overexpression of miR-124 increases both SINV structural protein translation and viral production and that this effect is mediated by its seed sequence. We further demonstrated that the SINV genome possesses a binding site for miR-124. Both inhibition of miR-124 and silent mutations to disrupt this binding site in the viral RNA abolished positive regulation. We also proved that miR-124 inhibition reduces SINV infection in human differentiated neuronal cells. Finally, we showed that the proviral effect of miR-124 is conserved in other alphaviruses, as its inhibition reduces chikungunya virus (CHIKV) production in human cells. Altogether, our work expands the panel of positive regulation of the viral cycle by direct binding of host miRNAs to the viral RNA and provides new insights into the role of cellular miRNAs as regulators of alphavirus infection.IMPORTANCE Arthropod-borne (arbo) viruses are part of a class of pathogens that are transmitted to their final hosts by insects. Because of climate change, the habitat of some of these insects, such as mosquitoes, is shifting, thereby facilitating the emergence of viral epidemics. Among the pathologies associated with arbovirus infection, neurological diseases such as meningitis and encephalitis represent a significant health burden. Using a genome-wide miRNA screen, we identified neuronal miR-124 as a positive regulator of the Sindbis and chikungunya alphaviruses. We also showed that this effect was in part direct, thereby opening novel avenues to treat alphavirus infections.
Asunto(s)
Infecciones por Alphavirus/genética , Alphavirus/genética , MicroARNs/genética , Alphavirus/metabolismo , Infecciones por Alphavirus/diagnóstico , Línea Celular , Fiebre Chikungunya/genética , Virus Chikungunya/genética , Fluorescencia , Ensayos Analíticos de Alto Rendimiento/métodos , Interacciones Huésped-Patógeno , Humanos , MicroARNs/metabolismo , Neuronas/metabolismo , ARN Viral/metabolismo , Virus Sindbis/genética , Replicación ViralRESUMEN
OBJECTIVE: Infection of human hepatocytes by the hepatitis C virus (HCV) is a multistep process involving both viral and host factors. microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Given that miRNAs were indicated to regulate between 30% and 75% of all human genes, we aimed to investigate the functional and regulatory role of miRNAs for the HCV life cycle. DESIGN: To systematically reveal human miRNAs affecting the HCV life cycle, we performed a two-step functional high-throughput miRNA mimic screen in Huh7.5.1 cells infected with recombinant cell culture-derived HCV. miRNA targeting was then assessed using a combination of computational and functional approaches. RESULTS: We uncovered miR-501-3p and miR-619-3p as novel modulators of HCV assembly/release. We discovered that these miRNAs regulate O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) protein expression and identified OGT and O-GlcNAcylation as regulators of HCV morphogenesis and infectivity. Furthermore, increased OGT expression in patient-derived liver tissue was associated with HCV-induced liver disease and cancer. CONCLUSION: miR-501-3p and miR-619-3p and their target OGT are previously undiscovered regulatory host factors for HCV assembly and infectivity. In addition to its effect on HCV morphogenesis, OGT may play a role in HCV-induced liver disease and hepatocarcinogenesis.
Asunto(s)
Hepacivirus/patogenicidad , Hepatitis C Crónica/genética , N-Acetilglucosaminiltransferasas/fisiología , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen/métodos , Estudio de Asociación del Genoma Completo/métodos , Hepacivirus/fisiología , Hepatitis C Crónica/virología , Hepatocitos/virología , Interacciones Huésped-Patógeno/genética , Humanos , Estadios del Ciclo de Vida/genética , MicroARNs/genética , Morfogénesis/fisiología , N-Acetilglucosaminiltransferasas/genética , Regulación hacia Arriba , Virulencia/genéticaRESUMEN
The mechanism by which micro (mi)RNAs control their target gene expression is now well understood. It is however less clear how the level of miRNAs themselves is regulated. Under specific conditions, abundant and highly complementary target RNA can trigger miRNA degradation by a mechanism involving nucleotide addition and exonucleolytic degradation. One such mechanism has been previously observed to occur naturally during viral infection. To date, the molecular details of this phenomenon are not known. We report here that both the degree of complementarity and the ratio of miRNA/target abundance are crucial for the efficient decay of the small RNA. Using a proteomic approach based on the transfection of biotinylated antimiRNA oligonucleotides, we set to identify the factors involved in target-mediated miRNA degradation. Among the retrieved proteins, we identified members of the RNA-induced silencing complex, but also RNA modifying and degradation enzymes. We further validate and characterize the importance of one of these, the Perlman Syndrome 3'-5' exonuclease DIS3L2. We show that this protein interacts with Argonaute 2 and functionally validate its role in target-directed miRNA degradation both by artificial targets and in the context of mouse cytomegalovirus infection.
Asunto(s)
Exorribonucleasas/genética , MicroARNs/genética , Nucleotidiltransferasas/genética , Estabilidad del ARN , ARN Mensajero/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Secuencia de Bases , Biotinilación , Línea Celular Tumoral , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Datos de Secuencia Molecular , Nucleotidiltransferasas/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Polinucleotido Adenililtransferasa , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismoRESUMEN
The Epstein-Barr virus (EBV) transforms B cells by expressing latent proteins and the BHRF1 microRNA cluster. MiR-BHRF1-3, its most transforming member, belongs to the recently identified group of weakly expressed microRNAs. We show here that miR-BHRF1-3 displays an unusually low propensity to form a stem-loop structure, an effect potentiated by miR-BHRF1-3's proximity to the BHRF1 polyA site. Cloning miR-BHRF1-2 or a cellular microRNA, but not a ribozyme, 5' of miR-BHRF1-3 markedly enhanced its expression. However, a virus carrying mutated miR-BHRF1-2 seed regions expressed miR-BHRF1-3 at normal levels and was fully transforming. Therefore, miR-BHRF1-2's role during transformation is independent of its seed regions, revealing a new microRNA function. Increasing the distance between miR-BHRF1-2 and miR-BHRF1-3 in EBV enhanced miR-BHRF1-3's expression but decreased its transforming potential. Thus, the expression of some microRNAs must be restricted to a narrow range, as achieved by placing miR-BHRF1-3 under the control of miR-BHRF1-2.
Asunto(s)
Transformación Celular Viral/genética , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/genética , MicroARNs/genética , Linfocitos B/virología , Secuencia de Bases , Northern Blotting , Western Blotting , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Humanos , MicroARNs/química , Modelos Moleculares , Familia de Multigenes , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
RNA silencing is a small RNA based mechanism regulating gene expression and involved in many biological processes in most eukaryotes. In plants, nematodes and arthropods, this mechanism participates to antiviral defense. In mammals, although the RNA silencing machinery is present and needed for the microRNA pathway, its importance as an antiviral defense is still debated. In recent years, several studies have attempted to answer to the question of whether RNA silencing as an antiviral pathway is retained in mammals. However, these studies did not provide a clear answer yet. In this review, we will present the arguments for and against a relevant antiviral role of RNA interference (RNAi) in mammals, by discussing examples of active and functional mammalian antiviral RNAi in specific cell types and/or in specific conditions.
RESUMEN
UNLABELLED: Epstein-Barr virus (EBV) is an oncogenic human herpesvirus involved in the pathogenesis of Burkitt's lymphoma (BL) and various other lymphoproliferative disorders. In BL, EBV protein expression is restricted to EBV nuclear antigen 1 (EBNA1), but small noncoding RNAs such as EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs) can also be detected. miRNAs play major roles in crucial processes such as proliferation, differentiation, and cell death. It has recently become clear that alterations in the expression profile of miRNAs contribute to the pathogenesis of a number of malignancies. During latent infection, EBV expresses 25 viral pre-miRNAs and modulates the expression of specific cellular miRNAs, such as miR-155 and miR-146, which potentially play a role in oncogenesis. Here, we established the small-RNA expression profiles of three BL cell lines. Using large-scale sequencing coupled to Northern blotting and real-time reverse transcription-PCR (RT-PCR) analysis validation, we demonstrated the differential expression of some cellular and viral miRNAs. High-level expression of the miR-183-96-182 cluster and EBV miR-BamHI A rightward transcript (miR-BART) cluster was significantly associated with EBV type I latency. This expression was not affected by viral reactivation since transforming growth factor ß1 (TGF-ß1) stimulation did not significantly change the miRNA profiles. However, using several approaches, including de novo infection with a mutant virus, we present evidence that the expression of latent membrane protein 1 (LMP-1) triggered downregulation of the expression of the miR-183-96-182 cluster. We further show that this effect involves the Akt signaling pathway. IMPORTANCE: In addition to expressing their own miRNAs, herpesviruses also impact the expression levels of cellular miRNAs. This regulation can be either positive or negative and usually results in the perturbation of pathways to create a cellular environment that is more "virus-friendly." For example, EBV induces the expression of miR-155, a well-characterized oncomiR, which leads to increased cell proliferation and decreased cell death. Here, we show that EBV-encoded LMP-1 is also involved in the downregulation of a cluster of three miRNAs, miR-183, -96, and -182, which are known to be also repressed in several cancers. We therefore identify yet another potential player in EBV-induced oncogenesis.
Asunto(s)
Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Familia de Multigenes/genética , Proteínas de la Matriz Viral/genética , Secuencia de Bases , Northern Blotting , Clonación Molecular , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , MicroARNs/genética , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARNRESUMEN
Small noncoding RNAs function in concert with Argonaute (Ago) proteins to regulate gene expression at the level of transcription, mRNA stability, or translation. Ago proteins bind small RNAs and form the core of silencing complexes. Here, we report the analysis of small RNAs associated with human Ago1 and Ago2 revealed by immunoprecipitation and deep sequencing. Among the reads, we find small RNAs originating from the small nucleolar RNA (snoRNA) ACA45. Moreover, processing of ACA45 requires Dicer activity but is independent of Drosha/DGCR8. Using bioinformatic prediction algorithms and luciferase reporter assays, we uncover the mediator subunit CDC2L6 as one potential mRNA target of ACA45 small RNAs, suggesting a role for ACA45-processing products in posttranscriptional gene silencing. We further identify a number of human snoRNAs with microRNA (miRNA)-like processing signatures. We have, therefore, identified a class of small RNAs in human cells that originate from snoRNAs and can function like miRNAs.