Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Xenotransplantation ; 27(1): e12551, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31407391

RESUMEN

Gene editing using clustered regularly interspaced short palindromic repeats/Cas9 has great potential for improving the compatibility of porcine organs with human recipients. However, the risk of detrimental off-target mutations in gene-edited pigs remains largely undefined. We have previously generated GGTA1 knock-in pigs for xenotransplantation using FokI-dCas9, a variant of Cas9 that is reported to reduce the frequency of off-target mutagenesis. In this study, we used whole genome sequencing (WGS) and optimized bioinformatic analysis to assess the fidelity of FokI-dCas9 editing in the generation of these pigs. Genomic DNA was isolated from porcine cells before and after gene editing and sequenced by WGS. The genomic sequences were analyzed using GRIDSS variant-calling software to detect putative structural variations (SVs), which were validated by PCR of DNA from knock-in and wild-type pigs. Platypus variant-calling software was used to detect single-nucleotide variations (SNVs) and small insertions/deletions (indels). GRIDSS analysis confirmed the precise integration of one copy of the knock-in construct in the gene-edited cells. Three additional SVs were detected by GRIDSS: deletions in intergenic regions in chromosome 6 and the X chromosome and a duplication of part of the CALD1 gene on chromosome 18. These mutations were not associated with plausible off-target sites, and were not detected in a second line of knock-in pigs generated using the same pair of guide RNAs, suggesting that they were the result of background mutation rather than off-target activity. Platypus identified 1375 SNVs/indels after quality filtering, but none of these were located in proximity to potential off-target sites, indicating that they were probably also spontaneous mutations. This is the first WGS analysis of pigs generated from FokI-dCas9-edited cells. Our results demonstrate that FokI-dCas9 is capable of high-fidelity gene editing with negligible off-target or undesired on-target mutagenesis.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Biología Computacional/métodos , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Edición Génica/métodos , Mutación/genética , Animales , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Análisis Mutacional de ADN , Estudios de Factibilidad , Sus scrofa , Trasplante Heterólogo , Secuenciación Completa del Genoma
2.
Nucleic Acids Res ; 45(12): 7191-7211, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28472341

RESUMEN

In mammalian embryonic gonads, SOX9 is required for the determination of Sertoli cells that orchestrate testis morphogenesis. To identify genetic networks directly regulated by SOX9, we combined analysis of SOX9-bound chromatin regions from murine and bovine foetal testes with sequencing of RNA samples from mouse testes lacking Sox9. We found that SOX9 controls a conserved genetic programme that involves most of the sex-determining genes. In foetal testes, SOX9 modulates both transcription and directly or indirectly sex-specific differential splicing of its target genes through binding to genomic regions with sequence motifs that are conserved among mammals and that we called 'Sertoli Cell Signature' (SCS). The SCS is characterized by a precise organization of binding motifs for the Sertoli cell reprogramming factors SOX9, GATA4 and DMRT1. As SOX9 biological role in mammalian gonads is to determine Sertoli cells, we correlated this genomic signature with the presence of SOX9 on chromatin in foetal testes, therefore equating this signature to a genomic bar code of the fate of foetal Sertoli cells. Starting from the hypothesis that nuclear factors that bind to genomic regions with SCS could functionally interact with SOX9, we identified TRIM28 as a new SOX9 partner in foetal testes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Factor de Transcripción SOX9/genética , Células de Sertoli/metabolismo , Transcriptoma , Animales , Bovinos , Cromatina/química , Cromatina/metabolismo , Embrión de Mamíferos , Femenino , Feto , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Redes Reguladoras de Genes , Masculino , Ratones , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo , Factor de Transcripción SOX9/metabolismo , Análisis de Secuencia de ARN , Células de Sertoli/citología , Procesos de Determinación del Sexo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 28 que Contiene Motivos Tripartito
3.
PLoS Genet ; 8(9): e1002894, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028338

RESUMEN

Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.


Asunto(s)
Neoplasias de la Mama/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , RecQ Helicasas/genética , Eliminación de Secuencia/genética , Alelos , Exoma/genética , Exones , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Linaje , Polimorfismo Genético , RecQ Helicasas/metabolismo , Análisis de Secuencia de ADN
4.
mSystems ; 8(6): e0086023, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37909753

RESUMEN

IMPORTANCE: Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Arrecifes de Coral , Calor , Adaptación Fisiológica , Bacterias/genética
5.
Sci Adv ; 9(20): eadg0773, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37196086

RESUMEN

Corals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral Pocillopora acuta. Combining imaging techniques, laser capture microdissection, and amplicon and metagenome sequencing, we show that (i) CAMAs are located in the tentacle tips and may be intracellular; (ii) CAMAs contain Endozoicomonas (Gammaproteobacteria) and Simkania (Chlamydiota) bacteria; (iii) Endozoicomonas may provide vitamins to its host and use secretion systems and/or pili for colonization and aggregation; (iv) Endozoicomonas and Simkania occur in distinct, but adjacent, CAMAs; and (v) Simkania may receive acetate and heme from neighboring Endozoicomonas. Our study provides detailed insight into coral endosymbionts, thereby improving our understanding of coral physiology and health and providing important knowledge for coral reef conservation in the climate change era.


Asunto(s)
Antozoos , Gammaproteobacteria , Animales , Antozoos/fisiología , Bacterias/genética , Arrecifes de Coral , Gammaproteobacteria/genética , Metagenoma
7.
Methods Mol Biol ; 316: 87-109, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16671402

RESUMEN

Mutation and selection are the principle forces governing gene and protein sequence. Mutation is the major source of variation, and selection removes variation. Although many mutations are likely to be neutral with respect to natural selection, much of the extant sequence that is functionally important has experienced selective pressures in the past. By examining the history of DNA sequences, we can infer the functional importance of particular residues and the selective pressures that have influenced their evolution. In this chapter, we review the most interesting approaches for inferring the evolutionary history of DNA and protein sequences and indicate how these analyses can be useful in the drug discovery process.


Asunto(s)
Diseño de Fármacos , Evolución Molecular , Animales , Variación Genética , Mutación , Filogenia , Selección Genética , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Factores de Transcripción
8.
Sci Rep ; 5: 15383, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26481089

RESUMEN

Microorganisms act both as drivers and indicators of perturbations in the marine environment. In an effort to establish baselines to predict the response of marine habitats to environmental change, here we report a broad survey of microbial diversity across the Indian Ocean, including the first microbial samples collected in the pristine lagoon of Salomon Islands, Chagos Archipelago. This was the first large-scale ecogenomic survey aboard a private yacht employing a 'citizen oceanography' approach and tools and protocols easily adapted to ocean going sailboats. Our data highlighted biogeographic patterns in microbial community composition across the Indian Ocean. Samples from within the Salomon Islands lagoon contained a community which was different even from adjacent samples despite constant water exchange, driven by the dominance of the photosynthetic cyanobacterium Synechococcus. In the lagoon, Synechococcus was also responsible for driving shifts in the metatranscriptional profiles. Enrichment of transcripts related to photosynthesis and nutrient cycling indicated bottom-up controls of community structure. However a five-fold increase in viral transcripts within the lagoon during the day, suggested a concomitant top-down control by bacteriophages. Indeed, genome recruitment against Synechococcus reference genomes suggested a role of viruses in providing the ecological filter for determining the ß-diversity patterns in this system.


Asunto(s)
Biodiversidad , Ecosistema , Microbiología del Agua , Animales , Océano Índico , Metagenoma , Metagenómica/métodos
9.
Proc Biol Sci ; 271(1557): 2551-8, 2004 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-15615680

RESUMEN

The extent to which prokaryotic evolution has been influenced by horizontal gene transfer (HGT) and therefore might be more of a network than a tree is unclear. Here we use supertree methods to ask whether a definitive prokaryotic phylogenetic tree exists and whether it can be confidently inferred using orthologous genes. We analysed an 11-taxon dataset spanning the deepest divisions of prokaryotic relationships, a 10-taxon dataset spanning the relatively recent gamma-proteobacteria and a 61-taxon dataset spanning both, using species for which complete genomes are available. Congruence among gene trees spanning deep relationships is not better than random. By contrast, a strong, almost perfect phylogenetic signal exists in gamma-proteobacterial genes. Deep-level prokaryotic relationships are difficult to infer because of signal erosion, systematic bias, hidden paralogy and/or HGT. Our results do not preclude levels of HGT that would be inconsistent with the notion of a prokaryotic phylogeny. This approach will help decide the extent to which we can say that there is a prokaryotic phylogeny and where in the phylogeny a cohesive genomic signal exists.


Asunto(s)
Bacterias/genética , Clasificación/métodos , Transferencia de Gen Horizontal/genética , Genoma Bacteriano , Filogenia , Funciones de Verosimilitud , Modelos Genéticos
10.
Astrobiology ; 11(3): 235-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21434765

RESUMEN

The last universal common ancestor of contemporary biology (LUCA) used a precise set of 20 amino acids as a standard alphabet with which to build genetically encoded protein polymers. Considerable evidence indicates that some of these amino acids were present through nonbiological syntheses prior to the origin of life, while the rest evolved as inventions of early metabolism. However, the same evidence indicates that many alternatives were also available, which highlights the question: what factors led biological evolution on our planet to define its standard alphabet? One possibility is that natural selection favored a set of amino acids that exhibits clear, nonrandom properties-a set of especially useful building blocks. However, previous analysis that tested whether the standard alphabet comprises amino acids with unusually high variance in size, charge, and hydrophobicity (properties that govern what protein structures and functions can be constructed) failed to clearly distinguish evolution's choice from a sample of randomly chosen alternatives. Here, we demonstrate unambiguous support for a refined hypothesis: that an optimal set of amino acids would spread evenly across a broad range of values for each fundamental property. Specifically, we show that the standard set of 20 amino acids represents the possible spectra of size, charge, and hydrophobicity more broadly and more evenly than can be explained by chance alone.


Asunto(s)
Aminoácidos/química , Evolución Química , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas
11.
ISME J ; 3(12): 1374-86, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19626056

RESUMEN

We report a ribosomal tag pyrosequencing study of the phylogenetic diversity of Archaea, Bacteria and Eucarya over a depth profile at the Hawaii Ocean Time-Series Station, ALOHA. The V9 region of the SSU rRNA gene was amplified from samples representing the epi- (10 m), meso- (800 m) and bathy- (4400 m) pelagia. The primers used are expected to amplify representatives of approximately 80% of known phylogenetic diversity across all three domains. Comparisons of unique sequences revealed a remarkably low degree of overlap between communities at each depth. The 444 147 sequence tags analyzed represented 62 975 unique sequences. Of these, 3707 (5.9%) occurred at two depths, and only 298 (0.5%) were observed at all three depths. At this level of phylogenetic resolution, Bacteria diversity decreased with depth but was still equivalent to that reported elsewhere for different soil types. Archaea diversity was highest in the two deeper samples. Eucarya observations and richness estimates are almost one order of magnitude higher than any previous marine microbial Eucarya richness estimates. The associations of many Eucarya sequences with putative parasitic organisms may have significant impacts on our understanding of the mechanisms controlling host population density and diversity, and point to a more significant role for microbial Eucarya in carbon flux through the microbial loop. We posit that the majority of sequences detected from the deep sea that have closest matches to sequences from non-pelagic sources are indeed native to the marine environment, and are possibly responsible for key metabolic processes in global biogeochemical cycles.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Eucariontes/clasificación , Agua de Mar/microbiología , Archaea/genética , Bacterias/genética , Análisis por Conglomerados , Cartilla de ADN/genética , ADN Ribosómico/genética , ADN Ribosómico/aislamiento & purificación , Eucariontes/genética , Genes de ARNr/genética , Hawaii , Océano Pacífico , Reacción en Cadena de la Polimerasa/métodos
12.
Mol Biol Evol ; 22(5): 1175-84, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15703245

RESUMEN

In considering the best possible solutions for answering phylogenetic questions from genomic sequences, we have chosen a strategy that we suggest is superior to others that have gone previously. We have ignored multigene families and instead have used single-gene families. This minimizes the inadvertent analysis of paralogs. We have employed strict data controls and have reasoned that if a protein is not capable of recovering the uncontroversial parts of a phylogenetic tree, then why should we use it for the more controversial parts? We have sliced and diced the data in as many ways as possible in order to uncover the signals in that data. Using this strategy, we have tested two controversial hypotheses concerning eukaryotic phylogenetic relationships: the placement of arthropoda and nematodes and the relationships of animals, plants, and fungi. We have constructed phylogenetic trees from 780 single-gene families from 10 completed genomes and amalgamated these into a single supertree. We have also carried out a total evidence analysis on the only universally distributed protein families that can accurately reconstruct the uncontroversial parts of the phylogenetic tree: a total of five families. In doing so, we ignore the majority of single-gene families that are universally distributed as they do not have the appropriate signals to recover the uncontroversial parts of the tree. We have also ignored every protein that has ever been used previously to address this issue, simply because none of them meet our strict criteria. Using these data controls, site stripping, and multiple analyses, 24 out of 26 analyses strongly support the grouping of vertebrates with arthropods (Coelomata hypothesis) and plants with animals. In the other two analyses, the data were ambivalent. The latter finding overturns an 11-year theory of Eukaryotic evolution; the first confirms what has already been said by others. In the light of this new tree, we re-analyze the evolution of intron gain and loss in the rpL14 gene and find that it is much more compatible with the hypothesis presented here than with the Opisthokonta hypothesis.


Asunto(s)
Grupos de Población Animal/genética , Evolución Molecular , Hongos/genética , Genoma , Filogenia , Plantas/genética , Proteínas Ribosómicas/genética , Animales , Proteínas de Drosophila/genética , Proteínas Fúngicas/genética , Intrones/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA