Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 62(41): 16691-16709, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37791920

RESUMEN

Tl2HgGeSe4 crystal was successfully, for the first time, synthesized by the Bridgman-Stockbarger technology, and its electronic structure and peculiarities of optical constants were investigated using both experimental and theoretical techniques. The present X-ray photoelectron spectroscopy measurements show that the Tl2HgGeSe4 crystal reveals small moisture sensitivity at ambient conditions and that the essential covalent constituent of the chemical bonding characterizes it. The latter suggestion was supported theoretically by ab initio calculations. The present experiments feature that the Tl2HgGeSe4 crystal is a high-resistance semiconductor with a specific electrical conductivity of σ ∼ 10-8 Ω-1 cm-1 (at 300 K). The crystal is characterized by p-type electroconductivity with an indirect energy band gap of 1.28 eV at room temperature. It was established that a good agreement with the experiments could be obtained when performing first-principles calculations using the modified Becke-Johnson functional as refined by Tran-Blaha with additional involvement in the calculating procedure of the Hubbard amendment parameter U and the impact of spin-orbit coupling (TB-mBJ + U + SO model). Under such a theoretical model, we have determined that the energy band gap of the Tl2HgGeSe4 crystal is equal to 1.114 eV, and this band gap is indirect in nature. The optical constants of Tl2HgGeSe4 are calculated based on the TB-mBJ + U + SO model.

2.
Cent Eur J Immunol ; 48(1): 75-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206588

RESUMEN

The coronavirus disease 2019 pandemic is an ongoing concern for medical care worldwide. Since its emergence, multiple COVID-19 vaccines have been designed, allowing for more effective control of the pandemic. COVID-19 vaccines, like any other form of medical intervention, may cause adverse and unforeseen side effects, varying in frequency and severity. Determining a correlation between the occurring symptoms and the vaccination is often a challenging task, requiring multiple data sources and reported cases. So far, there have been multiple reports of trigeminal neuralgia developing after COVID-19 vaccination. A 36-year-old woman was admitted to the Emergency Ward due to chronic pain attacks in the left side of her face. The pain appeared two months ago, on the day following the vaccination using the third dose of the Pfizer BioNTech COVID-19 vaccine. At the Neurology Department she was diagnosed with trigeminal neuralgia. Based on the lack of any obvious causes, relation to the vaccination, and other similar reports, we assumed that the trigeminal neuralgia was a complication of the vaccination. Hospital treatment consisted of oxcarbazepine, dexamethasone and pregabalin. Treatment was successful, with transient episodes of exacerbation. Six months after the onset of the disorder the patient remains without pain. We believe that the presented case supports the possibility of trigeminal neuralgia occurring in relation to the Pfizer BioNTech COVID-19 vaccine administration. Additional reports may further contribute to establishing a certain link.

3.
Inorg Chem ; 55(20): 10547-10557, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27690398

RESUMEN

Density functional theory (DFT) calculations within the concept of the MBJ+U+SO (modified Becke-Johnson potential + U + spin orbit) approach were performed for a Tl4HgBr6 single crystal for the first time assuming weak noncentrosymmetry (space group P4nc). Excellent agreement was achieved between the calculated and experimental band-gap-energy magnitudes as well as the density of electronic states measured by the X-ray photoelectron spectroscopy method. It is a very principal result because usually the DFT calculations underestimate the energy-gap values. In the present study, we carry out calculations of the optical properties (absorption coefficient, real and imaginary parts of the dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient, and optical reflectivity dispersions). It has been established that the principal origin of the observed weak acentricity is determined by delocalized band states at the top of the valence band originating from the p states of the Br atoms.

4.
J Phys Chem Lett ; 15(15): 4175-4184, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38597687

RESUMEN

The spectroscopic properties of the Mn4+ ion are investigated in the series of isostructural double perovskite compounds, Ba2BTaO6 (B = Y, Lu, Sc). A comparison of these properties highlights the influence of covalent bonding within the perovskite framework and the degree of order between the B3+-Ta cations on the energy and intensity of the Mn4+2E → 4A2 emission transition (R-line). These two parameters of the emission spectrum are of importance for practical application since they determine the phosphor luminous efficacy. The influence of covalent bonding within the corner shared BO6/2 and TaO6/2 perovskite framework on the energy of the R-line energy is investigated. From the spectroscopic data, we have derived information on the influence of the degree of order between the B3+ and Ta5+ cations on the intensity of the R-line. The lowest energy and the highest intensity of the R-line are found in the double perovskite, Ba2ScTaO6. The purpose of this work is to propose for first time an explanation of these effects in the considered double perovskites. The obtained results are useful guidelines for practical improvement and tuning of key parameters of phosphors to the desired values.

5.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730896

RESUMEN

Lead-free K0.5Bi0.5TiO3 (KBT) ceramics with high density (~5.36 g/cm3, 90% of X-ray density) and compositional purity (up to 90%) were synthesized using a solid-state reaction method. Strongly condensed KBT ceramics revealed homogenous local microstructures. TG/DSC (Thermogravimetry-differential scanning calorimetry) techniques characterized the thermal and structural stability of KBT. High mass stability (>0.4%) has proven no KBT thermal decomposition or other phase precipitation up to 1000 °C except for the co-existing K2Ti6O13 impurity. A strong influence of crystallites size and sintering conditions on improved dielectric and non-linear optical properties was reported. A significant increase (more than twice) in dielectric permittivity (εR), substantial for potential applications, was found in the KBT-24h specimen with extensive milling time. Moreover, it was observed that the second harmonic generation (λSHG = 532 nm) was activated at remarkably low fundamental beam intensity. Finally, spectroscopic experiments (Fourier transform Raman and far-infrared spectroscopy (FT-IR)) were supported by DFT (Density functional theory) calculations with a 2 × 2 × 2 supercell (P42mc symmetry and C4v point group). Moreover, the energy band gap was calculated (Eg = 2.46 eV), and a strong hybridization of the O-2p and Ti-3d orbitals at Eg explained the nature of band-gap transition (Γ â†’ Γ).

6.
Sci Rep ; 14(1): 16293, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009787

RESUMEN

In the present work, we report on theoretical studies of thermodynamic properties, structural and dynamic stabilities, dependence of unit-cell parameters and elastic constants upon hydrostatic pressure, charge carrier effective masses, electronic and optical properties, contributions of interband transitions in the Brillouin zone of the novel Tl2HgGeSe4 crystal. The theoretical calculations within the framework of the density-functional perturbation theory (DFPT) are carried out employing different approaches to gain the best correspondence to the experimental data. The present theoretical data indicate the dynamical stability of the title crystal and they reveal that, under hydrostatic pressure, it is much more compressible along the a-axis than along the c-axis. Strikingly, the charge effective mass values ( m e ∗ and m h ∗ ) vary considerably when the high symmetry direction changes indicating a relative anisotropy of the charge-carrier's mobility. Furthermore, the Young modulus and compressibility are characterized by the maximum and minimum values ( E max and E min ) and ( ß max and ß min ) that are equal to (62.032 and 28.812) GPa and (13.672 and 6.7175) TPa-1, respectively. Additionally, we have performed calculations of the Raman spectra (RS) and reached a good correspondence with the experimental RS spectra of the Tl2HgGeSe4 crystal. The XPES associated to RS constitutes powerful techniques to explore the oxidized states of Se and Ge in Tl2HgGeSe4 system.

7.
Materials (Basel) ; 16(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959614

RESUMEN

The aim of this study is to comprehensively examine the structural composition and properties of the AgAlS2 crystal during its high-pressure phase. This analysis delves into the second coordination environment of the crystal structure and elucidates the distinct transformations it undergoes during the phase transition. The band energy structure was calculated, and the origin of electronic levels was clarified. It is shown that the crystal becomes non-stratified during the phase transition. This study also determined the values of the crystal's carrier effective masses, underscoring its spatial anisotropy. It was found that the calculated optical functions are similar to the crystal in the chalcopyrite structure, and their differences are shown. Further, this study involved the calculation of the crystal's phonon spectrum, revealing the spectrum's transformation during the phase transition. The vibrational frequencies were also obtained, with a symmetrical classification of vibrational modes. Finally, this study derived the infrared and Raman spectra of the AgAlS2 crystal, thereby providing a comprehensive picture of the crystal during its high-pressure phase.

8.
Materials (Basel) ; 16(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37297190

RESUMEN

The crystals of Mn4+-activated fluorides, such as those of the hexafluorometallate family, are widely known for their luminescence properties. The most commonly reported red phosphors are A2XF6: Mn4+ and BXF6: Mn4+ fluorides, where A represents alkali metal ions such as Li, Na, K, Rb, Cs; X=Ti, Si, Ge, Zr, Sn, B = Ba and Zn; and X = Si, Ge, Zr, Sn, and Ti. Their performance is heavily influenced by the local structure around dopant ions. Many well-known research organizations have focused their attention on this area in recent years. However, there has been no report on the effect of local structural symmetrization on the luminescence properties of red phosphors. The purpose of this research was to investigate the effect of local structural symmetrization on the polytypes of K2XF6 crystals, namely Oh-K2MnF6, C3v-K2MnF6, Oh-K2SiF6, C3v-K2SiF6, D3d-K2GeF6, and C3v-K2GeF6. These crystal formations yielded seven-atom model clusters. Discrete Variational Xα (DV-Xα) and Discrete Variational Multi Electron (DVME) were the first principles methods used to compute the Molecular orbital energies, multiplet energy levels, and Coulomb integrals of these compounds. The multiplet energies of Mn4+ doped K2XF6 crystals were qualitatively reproduced by taking lattice relaxation, Configuration Dependent Correction (CDC), and Correlation Correction (CC) into account. The 4A2g→4T2g (4F) and 4A2g→4T1g (4F) energies increased when the Mn-F bond length decreased, but the 2Eg → 4A2g energy decreased. Because of the low symmetry, the magnitude of the Coulomb integral became smaller. As a result, the decreasing trend in the R-line energy could be attributed to a decreased electron-electron repulsion.

9.
Materials (Basel) ; 15(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35057326

RESUMEN

Isostatic pressure effects on the elastic and electronic properties of non-doped and Mn4+-doped K2SiF6 (KSF) have been investigated by first-principles calculations within density functional theory (DFT). Bulk modulus was obtained by the Murnaghan's equation of states (EOS) using the relationship between volume and pressures at pressures between 0 and 40 GPa, and elastic constants were calculated by the stress-strain relationship giving small distortions at each pressure point. The other elastic parameters such as shear modulus, sound velocity and Debye temperature, which can be obtained from the elastic constants, were also estimated. The influence of external isostatic pressure on the electronic properties, such as crystal field strength 10Dq and emission energy of 2E → 4A2 transition (Eem), of KSF:Mn4+ was also studied. The results suggest that 10Dq and Eem linearly increase and decrease, respectively, with increasing pressure.

10.
Materials (Basel) ; 14(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34639984

RESUMEN

In this paper, the density functional theory accompanied with linear combination of atomic orbitals (LCAO) method is applied to study the atomic and electronic structure of the Ti3+ and Ti2+ ions substituted for the host Al atom in orthorhombic Pbnm bulk YAlO3 crystals. The disordered crystalline structure of YAlO3 was modelled in a large supercell containing 160 atoms, allowing simulation of a substitutional dopant with a concentration of about 3%. In the case of the Ti2+-doped YAlO3, compensated F-center (oxygen vacancy with two trapped electrons) is inserted close to the Ti to make the unit cell neutral. Changes of the interatomic distances and angles between the chemical bonds in the defect-containing lattices were analyzed and quantified. The positions of various defect levels in the host band gap were determined.

11.
ACS Appl Mater Interfaces ; 13(33): 39606-39620, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387484

RESUMEN

Searching for novel low-cost and eco-friendly materials for energy conversion is a good way to provide widespread utilization of thermoelectric technologies. Herein, we report the thermal behavior, phase equilibria data, and thermoelectric properties for the promising argyrodite-based Cu7P(SxSe1-x)6 thermoelectrics. Alloying of Cu7PSe6 with Cu7PS6 provides a continuous solid solution over the whole compositional range, as shown in the proposed phase diagram for the Cu7PS6-Cu7PSe6 system. As a member of liquid-like materials, the investigated Cu7P(SxSe1-x)6 solid solutions possess a dramatically low lattice thermal conductivity, as low as ∼0.2-0.3 W m-1 K-1, over the entire temperature range. Engineering the configurational entropy of the material by introducing more elements stabilizes the thermoelectrically beneficial high-symmetry γ-phase and promotes the multivalley electronic structure of the valence band. As a result, a remarkable improvement of the Seebeck coefficient and a reduction of electrical resistivity were observed for the investigated alloys. The combined effect of the extremely low lattice thermal conductivity and enhanced power factor leads to the significant enhancement of the thermoelectric figure of merit ZT up to ∼0.75 at 673 K for the Cu7P(SxSe1-x)6 (x = 0.5) sample with the highest configurational entropy, which is around twice higher compared with the pure selenide and almost four times higher than sulfide. This work not only demonstrates the large potential of Cu7P(SxSe1-x)6 materials for energy conversion but also promotes sulfide argyrodites as earth-abundant and environmentally friendly materials for energy conversion.

12.
Artículo en Inglés | MEDLINE | ID: mdl-31337007

RESUMEN

Volatile fungal metabolites are responsible for various odors and may contribute to a "sick building syndrome" (SBS) with a negative effect on the heath of building. The authors have attempted to fill the research gaps by analyzing microbial volatile organic compounds (MVOCs) originating from representatives of the Basidiomycetes class that grow on wood-polymer composite (WPC) boards. WPCs have been analyzed as a material exposed to biodeterioration. Indoor air quality (IAQ) is affected by the increased use of WPCs inside buildings, and is becoming a highly relevant research issue. The emission profiles of MVOCs at various stages of WPC decay have been demonstrated in detail for Coniophora puteana and Poria placenta, and used to set the European industrial standards for wood-decay fungi. Differences in the production of MVOCs among these species of fungi have been detected using the thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method. This study identifies the production of alcohols, aldehydes, ketones, carboxylic acids and other compounds during one month of fungal growth. The identified level of metabolites indicates a relation between the level of air pollution and condition of the WPC material, which may become part of IAQ quantification in the future. The study points to the species-specific compounds for representatives of brown and white-rot fungi and the compounds responsible for their odor. In this study, 1-Octen-3-ol was indicated as a marker for their active growth, which is also associated with SBS. The proposed experimental set-up and data analysis are a simple and convenient way to obtain emission profiles of MVOCs from microbes growing on different materials.


Asunto(s)
Basidiomycota/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/química , Madera/química , Contaminación del Aire Interior/análisis , Basidiomycota/clasificación , Basidiomycota/crecimiento & desarrollo , Síndrome del Edificio Enfermo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA