Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756105

RESUMEN

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estabilidad del ARN , Adenosina/metabolismo , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Modelos Biológicos , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal
2.
PLoS Biol ; 20(7): e3001683, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35853000

RESUMEN

N6-methyladenosine (m6A) is a highly prevalent mRNA modification that promotes degradation of transcripts encoding proteins that have roles in cell development, differentiation, and other pathways. METTL3 is the major methyltransferase that catalyzes the formation of m6A in mRNA. As 30% to 80% of m6A can remain in mRNA after METTL3 depletion by CRISPR/Cas9-based methods, other enzymes are thought to catalyze a sizable fraction of m6A. Here, we reexamined the source of m6A in the mRNA transcriptome. We characterized mouse embryonic stem cell lines that continue to have m6A in their mRNA after Mettl3 knockout. We show that these cells express alternatively spliced Mettl3 transcript isoforms that bypass the CRISPR/Cas9 mutations and produce functionally active methyltransferases. We similarly show that other reported METTL3 knockout cell lines express altered METTL3 proteins. We find that gene dependency datasets show that most cell lines fail to proliferate after METTL3 deletion, suggesting that reported METTL3 knockout cell lines express altered METTL3 proteins rather than have full knockout. Finally, we reassessed METTL3's role in synthesizing m6A using an exon 4 deletion of Mettl3 and found that METTL3 is responsible for >95% of m6A in mRNA. Overall, these studies suggest that METTL3 is responsible for the vast majority of m6A in the transcriptome, and that remaining m6A in putative METTL3 knockout cell lines is due to the expression of altered but functional METTL3 isoforms.


Asunto(s)
Adenosina/análogos & derivados , Empalme Alternativo , Metiltransferasas , ARN Mensajero , Adenosina/genética , Adenosina/metabolismo , Empalme Alternativo/genética , Animales , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
3.
Nature ; 571(7765): 424-428, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292544

RESUMEN

N6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA1,2, with around 25% of mRNAs containing at least one m6A. Methylation of mRNA to form m6A is required for diverse cellular and physiological processes3. Although the presence of m6A in an mRNA can affect its fate in different ways, it is unclear how m6A directs this process and why the effects of m6A can vary in different cellular contexts. Here we show that the cytosolic m6A-binding proteins-YTHDF1, YTHDF2 and YTHDF3-undergo liquid-liquid phase separation in vitro and in cells. This phase separation is markedly enhanced by mRNAs that contain multiple, but not single, m6A residues. Polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their low-complexity domains and thereby leading to phase separation. The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated compartments, such as P-bodies, stress granules or neuronal RNA granules. m6A-mRNA is subject to compartment-specific regulation, including a reduction in the stability and translation of mRNA. These studies reveal that the number and distribution of m6A sites in cellular mRNAs can regulate and influence the composition of the phase-separated transcriptome, and suggest that the cellular properties of m6A-modified mRNAs are governed by liquid-liquid phase separation principles.


Asunto(s)
Adenosina/análogos & derivados , Compartimento Celular , ARN Mensajero/química , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Transporte Biológico , Línea Celular , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Humanos , Metilación , Metiltransferasas/deficiencia , Ratones , Transición de Fase , ARN Mensajero/análisis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico
4.
Nature ; 541(7637): 371-375, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28002401

RESUMEN

Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5' end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2'-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5' cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability.


Asunto(s)
Adenosina/análogos & derivados , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Estabilidad del ARN , Adenosina/química , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Endorribonucleasas/metabolismo , Epigénesis Genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Células HEK293 , Semivida , Humanos , Masculino , Metilación , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Especificidad por Sustrato , Sitio de Iniciación de la Transcripción , Transcriptoma
5.
Nature ; 537(7620): 369-373, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27602518

RESUMEN

The long non-coding RNA X-inactive specific transcript (XIST) mediates the transcriptional silencing of genes on the X chromosome. Here we show that, in human cells, XIST is highly methylated with at least 78 N6-methyladenosine (m6A) residues-a reversible base modification of unknown function in long non-coding RNAs. We show that m6A formation in XIST, as well as in cellular mRNAs, is mediated by RNA-binding motif protein 15 (RBM15) and its paralogue RBM15B, which bind the m6A-methylation complex and recruit it to specific sites in RNA. This results in the methylation of adenosine nucleotides in adjacent m6A consensus motifs. Furthermore, we show that knockdown of RBM15 and RBM15B, or knockdown of methyltransferase like 3 (METTL3), an m6A methyltransferase, impairs XIST-mediated gene silencing. A systematic comparison of m6A-binding proteins shows that YTH domain containing 1 (YTHDC1) preferentially recognizes m6A residues on XIST and is required for XIST function. Additionally, artificial tethering of YTHDC1 to XIST rescues XIST-mediated silencing upon loss of m6A. These data reveal a pathway of m6A formation and recognition required for XIST-mediated transcriptional repression.


Asunto(s)
Adenosina/análogos & derivados , Silenciador del Gen , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcripción Genética , Adenosina/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Células Madre Embrionarias/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Metilación , Metiltransferasas/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
EMBO J ; 30(1): 154-64, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21113127

RESUMEN

In Escherichia coli, cytokinesis is orchestrated by FtsZ, which forms a Z-ring to drive septation. Spatial and temporal control of Z-ring formation is achieved by the Min and nucleoid occlusion (NO) systems. Unlike the well-studied Min system, less is known about the anti-DNA guillotining NO process. Here, we describe studies addressing the molecular mechanism of SlmA (synthetic lethal with a defective Min system)-mediated NO. SlmA contains a TetR-like DNA-binding fold, and chromatin immunoprecipitation analyses show that SlmA-binding sites are dispersed on the chromosome except the Ter region, which segregates immediately before septation. SlmA binds DNA and FtsZ simultaneously, and the SlmA-FtsZ structure reveals that two FtsZ molecules sandwich a SlmA dimer. In this complex, FtsZ can still bind GTP and form protofilaments, but the separated protofilaments are forced into an anti-parallel arrangement. This suggests that SlmA may alter FtsZ polymer assembly. Indeed, electron microscopy data, showing that SlmA-DNA disrupts the formation of normal FtsZ polymers and induces distinct spiral structures, supports this. Thus, the combined data reveal how SlmA derails Z-ring formation at the correct place and time to effect NO.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Citocinesis , Proteínas del Citoesqueleto/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/química , Cromosomas Bacterianos , Cristalografía por Rayos X , Proteínas del Citoesqueleto/química , ADN Bacteriano/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
7.
Nat Struct Mol Biol ; 30(10): 1525-1535, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37710015

RESUMEN

Stress granules are biomolecular condensates composed of protein and mRNA. One feature of stress granule-enriched mRNAs is that they are often longer than average. Another feature of stress granule-enriched mRNAs is that they often contain multiple N6-methyladenosine (m6A) residues. m6A is bound by the YTHDF proteins, creating mRNA-protein complexes that partition into stress granules in mammalian cells. Here we show that length-dependent enrichment of mRNAs in stress granules is mediated by m6A. Long mRNAs often contain one or more long exons, which are preferential sites of m6A formation. In mammalian cells lacking m6A, long mRNAs no longer show preferential stress granule enrichment. Furthermore, we show that m6A abundance more strongly predicts which short or long mRNAs are enriched in stress granules, rather than length alone. Thus, mRNA length correlates with mRNA enrichment in stress granules owing to the high prevalence of m6A in long mRNAs.


Asunto(s)
Mamíferos , Gránulos de Estrés , Animales , ARN Mensajero/metabolismo , Mamíferos/genética
8.
J Biol Chem ; 286(51): 44095-44103, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22049078

RESUMEN

MicroRNAs (miRNA) are endogenous, short, non-coding RNA that undergo a multistep biogenesis before generating the functional, mature sequence. The core components of the microprocessor complex, consisting of Drosha and DGCR8, are both necessary and sufficient for this process, although accessory proteins have been found that modulate the biogenesis of a subset of miRNA. Curiously, many of the proteins involved in miRNA biogenesis are also needed for ribosomal RNA processing. Here we show that nucleolin, another protein critical for rRNA processing, is involved in the biogenesis of microRNA 15a/16 (miR-15a/16), specifically at the primary to precursor stage of processing. Through overexpression and knockdown studies, we show that miR-15a/16 levels are directly correlated to nucleolin expression. Furthermore, we found that cellular localization is critical for the proper functioning of nucleolin in this pathway and that nucleolin directly interacts with DGCR8 and Drosha in the nucleus. Nucleolin can bind to the primary miRNA both directly and specifically. Finally, we show that in the absence of nucleolin, cell extracts are unable to process miR-15a/16 in vitro and that this can be rescued by the addition of nucleolin. Our findings offer a new protein component in the microRNA biogenesis pathway and lend insight into miRNA dysregulation in certain cancers.


Asunto(s)
MicroARNs/química , Fosfoproteínas/química , Proteínas de Unión al ARN/química , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , MicroARNs/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Fracciones Subcelulares/metabolismo , Nucleolina
9.
Nucleic Acids Res ; 37(18): 6116-25, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19666721

RESUMEN

Stm1p is a Saccharomyces cerevisiae protein that is primarily associated with cytosolic 80S ribosomes and polysomes. Several lines of evidence suggest that Stm1p plays a role in translation under nutrient stress conditions, although its mechanism of action is not yet known. In this study, we show that yeast lacking Stm1p (stm1Delta) are hypersensitive to the translation inhibitor anisomycin, which affects the peptidyl transferase reaction in translation elongation, but show little hypersensitivity to other translation inhibitors such as paromomycin and hygromycin B, which affect translation fidelity. Ribosomes isolated from stm1Delta yeast have intrinsically elevated levels of eukaryotic elongation factor 3 (eEF3) associated with them. Overexpression of eEF3 in cells lacking Stm1p results in a growth defect phenotype and increased anisomycin sensitivity. In addition, ribosomes with increased levels of Stm1p exhibit decreased association with eEF3. Taken together, our data indicate that Stm1p plays a complementary role to eEF3 in translation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Extensión de la Cadena Peptídica de Translación , Factores de Elongación de Péptidos/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Procesos de Crecimiento Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Polirribosomas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
10.
Cancer Cell ; 39(7): 958-972.e8, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34048709

RESUMEN

N6-Methyladenosine (m6A) on mRNAs mediates different biological processes and its dysregulation contributes to tumorigenesis. How m6A dictates its diverse molecular and cellular effects in leukemias remains unknown. We found that YTHDC1 is the essential m6A reader in myeloid leukemia from a genome-wide CRISPR screen and that m6A is required for YTHDC1 to undergo liquid-liquid phase separation and form nuclear YTHDC1-m6A condensates (nYACs). The number of nYACs increases in acute myeloid leukemia (AML) cells compared with normal hematopoietic stem and progenitor cells. AML cells require the nYACs to maintain cell survival and the undifferentiated state that is critical for leukemia maintenance. Furthermore, nYACs enable YTHDC1 to protect m6A-mRNAs from the PAXT complex and exosome-associated RNA degradation. Collectively, m6A is required for the formation of a nuclear body mediated by phase separation that maintains mRNA stability and control cancer cell survival and differentiation.


Asunto(s)
Adenosina/análogos & derivados , Núcleo Celular/metabolismo , Metilación de ADN , Leucemia Mieloide Aguda/prevención & control , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Adenosina/química , Adenosina/metabolismo , Animales , Apoptosis , Diferenciación Celular , Núcleo Celular/genética , Proliferación Celular , Femenino , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Extracción Líquido-Líquido , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas del Tejido Nervioso/genética , Transición de Fase , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Empalme de ARN/genética , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cell Rep ; 28(7): 1703-1716.e6, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412241

RESUMEN

Stem cells balance cellular fates through asymmetric and symmetric divisions in order to self-renew or to generate downstream progenitors. Symmetric commitment divisions in stem cells are required for rapid regeneration during tissue damage and stress. The control of symmetric commitment remains poorly defined. Using single-cell RNA sequencing (scRNA-seq) in combination with transcriptomic profiling of HSPCs (hematopoietic stem and progenitor cells) from control and m6A methyltransferase Mettl3 conditional knockout mice, we found that m6A-deficient hematopoietic stem cells (HSCs) fail to symmetrically differentiate. Dividing HSCs are expanded and are blocked in an intermediate state that molecularly and functionally resembles multipotent progenitors. Mechanistically, RNA methylation controls Myc mRNA abundance in differentiating HSCs. We identified MYC as a marker for HSC asymmetric and symmetric commitment. Overall, our results indicate that RNA methylation controls symmetric commitment and cell identity of HSCs and may provide a general mechanism for how stem cells regulate differentiation fate choice.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas/citología , Metiltransferasas/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Femenino , Células Madre Hematopoyéticas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/genética , Estabilidad del ARN , Análisis de la Célula Individual
12.
Trends Cell Biol ; 28(2): 113-127, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29103884

RESUMEN

N6-Methyladenosine (m6A) is the most prevalent post-transcriptional modification of eukaryotic mRNA and long noncoding RNA. m6A mediates its effects primarily by recruiting proteins, including the multiprotein eukaryotic initiation factor 3 complex and a set of proteins that contain the YTH domain. Here we describe the mechanisms by which YTH domain-containing proteins bind m6A and influence the fate of m6A-containing RNA in mammalian cells. We discuss the diverse, and occasionally contradictory, functions ascribed to these proteins and the emerging concepts that are influencing our understanding of these proteins and their effects on the epitranscriptome.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Portadoras/genética , Sistemas de Lectura/fisiología , Transcriptoma/fisiología , Adenosina/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Humanos , Filogenia , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Cancer Lett ; 255(1): 85-94, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17493745

RESUMEN

Constitutive activation of the proinflammatory nuclear factor kappaB (NF-kappaB) transcription factor p65(RelA)/p50 has been implicated in many cancers, including leukemias, lymphomas, and several solid tumors, including lung cancer. In many cases, constitutive NF-kappaB activation can be recapitulated in cell lines isolated from these cancers. To test whether this is the case with non-small cell lung cancer (NSCLC) cell lines, we investigated the basal levels of NF-kappaB proteins, their subcellular distribution, their DNA-binding activities, and the expression of NF-kappaB-responsive genes in 10 NSCLC cell lines. The immortalized human bronchial epithelial cell line BEAS-2B served as a normal control. We found little evidence of substantial constitutive NF-kappaB activation in NSCLC cell lines, although most all of the normal and NSCLC cells possessed inducible NF-kappaB. Our findings provide a resource for the use of particular NSCLC cell lines for the investigation of constitutive and inducible NF-kappaB activity in vitro.


Asunto(s)
Bronquios/citología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , FN-kappa B/metabolismo , Bronquios/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ADN/química , ADN/metabolismo , Perfilación de la Expresión Génica , Humanos , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
14.
Am J Cancer Res ; 7(8): 1654-1664, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861322

RESUMEN

The 14-3-3ζ protein belongs to the 14-3-3 family of regulatory eukaryotic proteins that modulate signaling by binding to wide variety of signaling molecules. 14-3-3ζ expression is amplified in over 40% breast cancer patients and is associated with a poor prognosis. Various in vitro and xenograft models have suggested that attenuating 14-3-3ζ expression may provide therapeutic benefits but there has been no study looking at tumor onset and metastasis in breast cancer mouse models with a targeted deletion of 14-3-3ζ. We generated a 14-3-3ζ knockout mouse model to characterize the role of 14-3-3ζ in breast cancer progression. Crossing 14-3-3ζ-/- mice with MMTV-PyMT and MMTV-Neu transgenic mice revealed that loss of 14-3-3ζ prolonged tumor latency and reduced lung metastasis as compared to MMTV-PyMT and MMTV-Neu mice. Mechanistically, loss of 14-3-3ζ suppressed tumor proliferation and angiogenesis and promoted apoptosis by suppressing the Akt and Erk pathway and upregulated the expression of the tumor suppressor p53. Our results provide evidence showing that attenuating 14-3-3ζ expression/activity in mammary tumors can provide a therapeutic benefit.

15.
Nat Med ; 23(11): 1369-1376, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28920958

RESUMEN

N6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA that is required for the differentiation of mouse embryonic stem cells. However, it remains unknown whether the m6A modification controls the differentiation of normal and/or malignant myeloid hematopoietic cells. Here we show that shRNA-mediated depletion of the m6A-forming enzyme METTL3 in human hematopoietic stem/progenitor cells (HSPCs) promotes cell differentiation, coupled with reduced cell proliferation. Conversely, overexpression of wild-type METTL3, but not of a catalytically inactive form of METTL3, inhibits cell differentiation and increases cell growth. METTL3 mRNA and protein are expressed more abundantly in acute myeloid leukemia (AML) cells than in healthy HSPCs or other types of tumor cells. Furthermore, METTL3 depletion in human myeloid leukemia cell lines induces cell differentiation and apoptosis and delays leukemia progression in recipient mice in vivo. Single-nucleotide-resolution mapping of m6A coupled with ribosome profiling reveals that m6A promotes the translation of c-MYC, BCL2 and PTEN mRNAs in the human acute myeloid leukemia MOLM-13 cell line. Moreover, loss of METTL3 leads to increased levels of phosphorylated AKT, which contributes to the differentiation-promoting effects of METTL3 depletion. Overall, these results provide a rationale for the therapeutic targeting of METTL3 in myeloid leukemia.


Asunto(s)
Adenosina/análogos & derivados , Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Leucemia Mieloide Aguda/patología , Metiltransferasas/fisiología , Adenosina/biosíntesis , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA