Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Am Chem Soc ; 146(8): 5550-5559, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364824

RESUMEN

OspD is a radical S-adenosyl-l-methionine (SAM) peptide epimerase that converts an isoleucine (Ile) and valine (Val) of the OspA substrate to d-amino acids during biosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural product landornamide A. OspD is proposed to carry out this reaction via α-carbon (Cα) H-atom abstraction to form a peptidyl Cα radical that is stereospecifically quenched by hydrogen atom transfer (HAT) from a conserved cysteine (Cys). Here we use site-directed mutagenesis, freeze-quench trapping, isotopic labeling, and electron paramagnetic resonance (EPR) spectroscopy to provide new insights into the OspD catalytic mechanism including the direct observation of the substrate peptide Cα radical intermediate. The putative quenching Cys334 was changed to serine to generate an OspD C334S variant impaired in HAT quenching. The reaction of reduced OspD C334S with SAM and OspA freeze-quenched at 15 s exhibits a doublet EPR signal characteristic of a Cα radical coupled to a single ß-H. Using isotopologues of OspA deuterated at either Ile or Val, or both Ile and Val, reveals that the initial Cα radical intermediate forms exclusively on the Ile of OspA. Time-dependent freeze quench coupled with EPR spectroscopy provided evidence for loss of the Ile Cα radical concomitant with gain of a Val Cα radical, directly demonstrating the N-to-C directionality of epimerization by OspD. These results provide direct evidence for the aforementioned OspD-catalyzed peptide epimerization mechanism via a central Cα radical intermediate during RiPP maturation of OspA, a mechanism that may extend to other proteusin peptide epimerases.


Asunto(s)
Metionina , S-Adenosilmetionina , S-Adenosilmetionina/química , Carbono , Péptidos/química , Aminoácidos , Racemetionina , Valina
2.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38140959

RESUMEN

Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.


Asunto(s)
Metschnikowia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Botrytis/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Hierro/metabolismo
3.
Curr Opin Chem Biol ; 80: 102463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729090

RESUMEN

Novel discoveries in natural product biosynthesis reveal hidden bioactive compounds and expand our knowledge in enzymology. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products featuring diverse non-canonical amino acids introduced by maturation enzymes as a class-defining characteristic. Underexplored RiPP sources, such as the human microbiome, the oceans, uncultured microorganisms, and plants are rich hunting grounds for novel enzymology. Unusual α- and ß-amino acids, peptide cleavages, lipidations, diverse macrocyclizations, and other features expand the range of chemical groups that are installed in RiPPs by often promiscuous enzymes. This review highlights the search for novelty in RiPP enzymology in the past two years, with respect to the discovery of new biochemical modifications but also towards novel applications.


Asunto(s)
Péptidos , Procesamiento Proteico-Postraduccional , Humanos , Péptidos/metabolismo , Péptidos/química , Ribosomas/metabolismo , Productos Biológicos/metabolismo , Productos Biológicos/química , Animales , Enzimas/metabolismo , Enzimas/química
4.
Mar Biotechnol (NY) ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103714

RESUMEN

Numerous biologically active natural products have been discovered from marine sponges, particularly from Theonella swinhoei, which is known to be a prolific source of natural products such as polyketides and peptides. Recent studies have revealed that many of these natural products are biosynthesized by Candidatus Entotheonella phylotypes, which are uncultivated symbionts within T. swinhoei. Consequently, Entotheonella is considered an untapped biochemical resource. In this study, we conducted metagenomic analyses to assess the diversity of Entotheonella in two T. swinhoei Y and two T. swinhoei W (Y and W referring to the yellow and white interior of the sponge, respectively), after separating filamentous bacteria using density gradient centrifugation. We obtained five Entotheonella metagenome-assembled genomes (MAGs) from filamentous bacteria-enriched fractions. Notably, one of these MAGs is significantly different from previously reported Entotheonella variants. Additionally, we identified closely related Entotheonella members present across different chemotypes of T. swinhoei. Thus, our metagenomic insights reveal that the diversity of Entotheonella within Theonella sponges is greater than previously recognized.

5.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513027

RESUMEN

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Asunto(s)
Aciltransferasas , Proteínas Bacterianas , Evolución Molecular Dirigida , Sintasas Poliquetidas , Policétidos , Proteínas Recombinantes de Fusión , Aciltransferasas/genética , Aciltransferasas/química , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Policétidos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Serratia , Secuencias de Aminoácidos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA