Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Virol ; 173: 105661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38503118

RESUMEN

BACKGROUND: Various SARS-CoV-2 variants of concerns (VOCs) characterized by higher transmissibility and immune evasion have emerged. Despite reduced vaccine efficacy against VOCs, currently available vaccines provide protection. Population-based evidence on the humoral immune response after booster vaccination is crucial to guide future vaccination strategies and in preparation for imminent COVID-19 waves. METHODS: This multicenter, population-based cohort study included 4697 individuals ≥18 years of age who received a booster vaccination. Antibody levels against SARS-CoV-2 receptor binding domain (RBD) and neutralizing antibodies against wild-type (WT) virus and Omicron variants were assessed at baseline (day of booster vaccination) and after four weeks. Safety was evaluated daily within the first week using a participant-completed electronic diary. Antibody levels were compared across different vaccination strategies, taking into account individual host factors. RESULTS: Our main model including 3838 participants revealed that individuals who received a booster with mRNA-1273 compared to BNT162b2 vaccine had a significantly higher increase (95 %CI) in anti-RBD-antibody levels (37,707 BAU/mL [34,575-40,839] vs. 27,176 BAU/mL [26,265-28,087]), and of neutralization levels against WT (1,681 [1490-1872] vs. 1141 [1004-1278] and Omicron variant (422 [369-474] vs. 329 [284-374]). Neutralizing antibody titres highly correlated with anti-RBD antibodies, with neutralizing capacity 4.4 fold higher against WT compared to Omicron. No differences in safety were found between the two booster vaccines. CONCLUSION: Our study underlines the superiority of a booster vaccination with mRNA-1273, independent of the primary vaccination and therefore provides guidance on the vaccination strategy.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Humanos , Masculino , COVID-19/prevención & control , COVID-19/inmunología , Femenino , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , SARS-CoV-2/inmunología , Persona de Mediana Edad , Adulto , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Anciano , Estudios de Cohortes , Vacunación , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293237

RESUMEN

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

3.
Nat Commun ; 14(1): 1734, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977711

RESUMEN

Severe acute respiratory syndrome 2 Omicron BA.4 and BA.5 are characterized by high transmissibility and ability to escape natural and vaccine induced immunity. Here we test the neutralizing activity of 482 human monoclonal antibodies isolated from people who received two or three mRNA vaccine doses or from people vaccinated after infection. The BA.4 and BA.5 variants are neutralized only by approximately 15% of antibodies. Remarkably, the antibodies isolated after three vaccine doses target mainly the receptor binding domain Class 1/2, while antibodies isolated after infection recognize mostly the receptor binding domain Class 3 epitope region and the N-terminal domain. Different B cell germlines are used by the analyzed cohorts. The observation that mRNA vaccination and hybrid immunity elicit a different immunity against the same antigen is intriguing and its understanding may help to design the next generation of therapeutics and vaccines against coronavirus disease 2019.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Vacunas de ARNm , Anticuerpos Monoclonales , Inmunidad Adaptativa , Células Germinativas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
4.
Nat Commun ; 14(1): 53, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599850

RESUMEN

The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies.


Asunto(s)
Formación de Anticuerpos , Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas contra la COVID-19/inmunología , Linfocitos B/inmunología
5.
Nat Commun ; 13(1): 3375, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697673

RESUMEN

SARS-CoV-2 vaccines, administered to billions of people worldwide, mitigate the effects of the COVID-19 pandemic, however little is known about the molecular basis of antibody cross-protection to emerging variants, such as Omicron BA.1, its sublineage BA.2, and other coronaviruses. To answer this question, 276 neutralizing monoclonal antibodies (nAbs), previously isolated from seronegative and seropositive donors vaccinated with BNT162b2 mRNA vaccine, were tested for neutralization against the Omicron BA.1 and BA.2 variants, and SARS-CoV-1 virus. Only 14.2, 19.9 and 4.0% of tested antibodies neutralize BA.1, BA.2, and SARS-CoV-1 respectively. These nAbs recognize mainly the SARS-CoV-2 receptor binding domain (RBD) and target Class 3 and Class 4 epitope regions on the SARS-CoV-2 spike protein. Interestingly, around 50% of BA.2 nAbs did not neutralize BA.1 and among these, several targeted the NTD. Cross-protective antibodies derive from a variety of germlines, the most frequents of which were the IGHV1-58;IGHJ3-1, IGHV2-5;IGHJ4-1 and IGHV1-69;IGHV4-1. Only 15.6, 20.3 and 7.8% of predominant gene-derived nAbs elicited against the original Wuhan virus cross-neutralize Omicron BA.1, BA.2 and SARS-CoV-1 respectively. Our data provide evidence, at molecular level, of the presence of cross-neutralizing antibodies induced by vaccination and map conserved epitopes on the S protein that can inform vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Epítopos/genética , Humanos , Pruebas de Neutralización , Pandemias/prevención & control , ARN Mensajero/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
6.
Commun Biol ; 5(1): 903, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056181

RESUMEN

The SARS-CoV-2 Omicron variant has rapidly replaced the Delta variant of concern. This new variant harbors worrisome mutations on the spike protein, which are able to escape the immunity elicited by vaccination and/or natural infection. To evaluate the impact and susceptibility of different serum samples to the Omicron variant BA.1, samples from COVID-19 patients and vaccinated individuals were tested for their ability to bind and neutralize the original SARS-CoV-2 virus and the Omicron variant BA.1. COVID-19 patients show the most drastic reduction in Omicron-specific antibody response in comparison with the response to the wild-type virus. Antibodies elicited by a triple homologous/heterologous vaccination regimen or following natural SARS-CoV-2 infection combined with a two-dose vaccine course, result in highest neutralization capacity against the Omicron variant BA.1. Overall, these findings confirm that vaccination of COVID-19 survivors and booster dose to vaccinees with mRNA vaccines is the correct strategy to enhance the antibody cross-protection against Omicron variant BA.1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Formación de Anticuerpos , COVID-19/prevención & control , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA