RESUMEN
The study of the soil resistome is important in understanding the evolution of antibiotic resistance and its dissemination between the clinic and the environment. However, very little is known about the soil resistome, especially of those from deserts. Here, we characterize the bacterial communities, using targeted sequencing of the 16S rRNA genes, and both the resistome and the mobilome in Namib Desert soils, using shotgun metagenomics. We detected a variety of antibiotic resistance genes (ARGs) that conferred resistance to antibiotics such as elfamycin, rifampicin, and fluoroquinolones, metal/biocide resistance genes (MRGs/BRGs) conferring resistance to metals such as arsenic and copper, and mobile genetic elements (MGEs) such as the ColE1-like plasmid. The presence of metal/biocide resistance genes in close proximity to ARGs indicated a potential for co-selection of resistance to antibiotics and metals/biocides. The co-existence of MGEs and horizontally acquired ARGs most likely contributed to a decoupling between bacterial community composition and ARG profiles. Overall, this study indicates that soil bacterial communities in Namib Desert soils host a diversity of resistance elements and that horizontal gene transfer, rather than host phylogeny, plays an essential role in their dynamics.
RESUMEN
Precipitation is one of the major constraints influencing the diversity, structure, and activity of soil microbial communities in desert ecosystems. However, the effect of changes in precipitation on soil microbial communities in arid soil microbiomes remains unresolved. In this study, using 16S rRNA gene high-throughput sequencing and shotgun metagenome sequencing, we explored changes in taxonomic composition and functional potential across two zones in the Namib Desert with contrasting precipitation regime. We found that precipitation regime had no effect on taxonomic and functional alpha-diversity, but that microbial community composition and functional potential (beta-diversity) changed with increased precipitation. For instance, Acidobacteriota and 'resistance to antibiotics and toxic compounds' related genes were relatively more abundant in the high-rainfall zone. These changes were largely due to a small set of microbial taxa, some of which were present in low abundance (i.e. members of the rare biosphere). Overall, these results indicate that key climatic factors (i.e. precipitation) shape the taxonomic and functional attributes of the arid soil microbiome. This research provides insight into how changes in precipitation patterns associated with global climate change may impact microbial community structure and function in desert soils.
Asunto(s)
Microbiota , Suelo , Clima Desértico , Metagenoma , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del SueloRESUMEN
The effective control of multidrug resistant tuberculosis (MDR-TB) relies upon the timely diagnosis and correct treatment of all tuberculosis cases. Whole genome sequencing (WGS) has great potential as a method for the rapid diagnosis of drug resistant Mycobacterium tuberculosis (Mtb) isolates. This method overcomes most of the problems that are associated with current phenotypic drug susceptibility testing. However, the application of WGS in the clinical setting has been deterred by data complexities and skill requirements for implementing the technologies as well as clinical interpretation of the next generation sequencing (NGS) data. The proposed diagnostic application was drawn upon recent discoveries of patterns of Mtb clade-specific genetic polymorphisms associated with antibiotic resistance. A catalogue of genetic determinants of resistance to thirteen anti-TB drugs for each phylogenetic clade was created. A computational algorithm for the identification of states of diagnostic polymorphisms was implemented as an online software tool, Resistance Sniffer (http://resistance-sniffer.bi.up.ac.za/), and as a stand-alone software tool to predict drug resistance in Mtb isolates using complete or partial genome datasets in different file formats including raw Illumina fastq read files. The program was validated on sequenced Mtb isolates with data on antibiotic resistance trials available from GMTV database and from the TB Platform of South African Medical Research Council (SAMRC), Pretoria. The program proved to be suitable for probabilistic prediction of drug resistance profiles of individual strains and large sequence data sets.
Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Programas Informáticos , Secuenciación Completa del Genoma , Algoritmos , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Filogenia , Polimorfismo de Nucleótido Simple , SudáfricaRESUMEN
This study was conducted to determine the phylogenies of Salmonella strains isolated from cross-sectional studies conducted at hatcheries, broiler farms, processing plants, and retail outlets (broiler production chain) in Trinidad and Tobago over 4 yr (2016-2019). Whole-genome sequencing (WGS) was used to characterize Salmonella isolates. Core genome phylogenies of 8 serovars of public health significance were analyzed for similarities in origin and relatedness. In addition, Salmonella strains isolated from human salmonellosis cases in Trinidad were analyzed for their relatedness to the isolates detected along the broiler production chain. The common source of these isolates of diverse serovars within farms, within processing plants, between processing plants and retail outlets, and among farm-processing plant-retail outlet continuum was well-supported (bootstrap value >70%) by the core genome phylogenies for the respective serovars. Also, genome analyses revealed clustering of Salmonella serovars of regional (intra-Caribbean) and international (extra-Caribbean) origin. Similarly, strains of S. Enteritidis and S. Infantis isolated from human clinical salmonellosis in 2019 from Trinidad and Tobago clustered with our processing plant isolates recovered in 2018. This study is the first phylogenetic analysis of Salmonella isolates using WGS from the broiler industry in the Caribbean region. The use of WGS confirmed the genetic relatedness and transmission of Salmonella serovars contaminating chickens in broiler processing, and retailing in the country, with zoonotic and food safety implications for humans.
Asunto(s)
Intoxicación Alimentaria por Salmonella , Infecciones por Salmonella , Animales , Humanos , Filogenia , Trinidad y Tobago/epidemiología , Serogrupo , Pollos , Estudios Transversales , Salmonella , Intoxicación Alimentaria por Salmonella/veterinaria , AntibacterianosRESUMEN
Listeria monocytogenes is an important foodborne pathogen which has the ability to adapt and survive in food and food processing facilities where it can persist for years. In this study, a total of 143 L. monocytogenes isolates in South Africa (SA) were characterized for their strain's genetic relatedness, virulence profiles, stress tolerance and resistance genes associated with L. monocytogenes. The Core Genome Multilocus Sequence Typing (cgMLST) analysis revealed that the most frequent serogroups were IVb and IIa; Sequence Types (ST) were ST204, ST2, and ST1; and Clonal Complexes (CC) were CC204, CC1, and CC2. Examination of genes involved in adaptation and survival of L. monocytogenes in SA showed that ST1, ST2, ST121, ST204, and ST321 are well adapted in food processing environments due to the significant over-representation of Benzalkonium chloride (BC) resistance genes (bcrABC cassette, ermC, mdrL and Ide), stress tolerance genes (SSI-1 and SSI-2), Prophage (φ) profiles (LP_101, vB LmoS 188, vB_LmoS_293, and B054 phage), plasmids profiles (N1-011A, J1776, and pLM5578) and biofilm formation associated genes. Furthermore, the L. monocytogenes strains that showed hyper-virulent potential were ST1, ST2 and ST204, and hypo-virulent were ST121 and ST321 because of the presence and absence of major virulence factors such as LIPI-1, LIPI-3, LIPI-4 and the internalin gene family members including inlABCEFJ. The information provided in this study revealed that hyper-virulent strains ST1, ST2, and ST204 could present a major public health risk due to their association with meat products and food processing environments in SA.
RESUMEN
The exhaustive use of antibiotics in humans, animal farming and other agricultural practices has resulted in the frequent appearance of antibiotic resistant bacteria in human-impacted habitats. However, antibiotic resistance in natural (less-impacted) habitats is less understood. Using shotgun metagenomics we analysed soils from relatively low anthropogenic impact sites across the Namib Desert. We report the presence of a clinically significant extended spectrum ß-lactamase (TEM-116), on a ColE1-like plasmid also carrying a metal resistance gene (arsC). The co-occurrence of resistance to antimicrobial drugs and metals encoded on a single mobile genetic element increases the probability of dissemination of these resistance determinants and the potential selection of multiple resistance mechanisms. In addition, the presence of a P7 entero-bacteriophage on the same plasmid, may represent a new vehicle for the propagation of TEM-116 in these soil communities. These findings highlight the role of the environment in the One Health initiative.