Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 37(3-4): 103-118, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36746605

RESUMEN

RNA-directed DNA methylation in plants is guided by 24-nt siRNAs generated in parallel with 23-nt RNAs of unknown function. We show that 23-nt RNAs function as passenger strands during 24-nt siRNA incorporation into AGO4. The 23-nt RNAs are then sliced into 11- and 12-nt fragments, with 12-nt fragments remaining associated with AGO4. Slicing recapitulated with recombinant AGO4 and synthetic RNAs reveals that siRNAs of 21-24 nt, with any 5'-terminal nucleotide, can guide slicing, with sliced RNAs then retained by AGO4. In vivo, RdDM target locus RNAs that copurify with AGO4 also display a sequence signature of slicing. Comparing plants expressing slicing-competent versus slicing-defective AGO4 shows that slicing elevates cytosine methylation levels at virtually all RdDM loci. We propose that siRNA passenger strand elimination and AGO4 tethering to sliced target RNAs are distinct modes by which AGO4 slicing enhances RNA-directed DNA methylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Metilación de ADN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Silenciador del Gen , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
2.
Mol Cell ; 75(3): 576-589.e5, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398324

RESUMEN

In eukaryotes with multiple small RNA pathways, the mechanisms that channel RNAs within specific pathways are unclear. Here, we reveal the reactions that account for channeling in the small interfering RNA (siRNA) biogenesis phase of the Arabidopsis RNA-directed DNA methylation pathway. The process begins with template DNA transcription by NUCLEAR RNA POLYMERASE IV (Pol IV), whose atypical termination mechanism, induced by nontemplate DNA base-pairing, channels transcripts to the associated RNA-dependent RNA polymerase RDR2. RDR2 converts Pol IV transcripts into double-stranded RNAs and then typically adds an extra untemplated 3' terminal nucleotide to the second strands. The dicer endonuclease DCL3 cuts resulting duplexes to generate 24- and 23-nt siRNAs. The 23-nt RNAs bear the untemplated terminal nucleotide of the RDR2 strand and are underrepresented among ARGONAUTE4-associated siRNAs. Collectively, our results provide mechanistic insights into Pol IV termination, Pol IV-RDR2 coupling, and RNA channeling, from template DNA transcription to siRNA strand discrimination.


Asunto(s)
Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasa III/genética , Transcripción Genética , Arabidopsis/genética , Proteínas Argonautas/genética , Metilación de ADN/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Transducción de Señal
3.
Plant Cell ; 35(6): 1626-1653, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36477566

RESUMEN

The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.


Asunto(s)
Regulación de la Expresión Génica , ARN , ARN de Planta/genética , ARN/genética , Interferencia de ARN , Metilación , Biología
4.
Genes Dev ; 31(15): 1601-1614, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28882854

RESUMEN

In eukaryotes, transcriptionally inactive loci are enriched within highly condensed heterochromatin. In plants, as in mammals, the DNA of heterochromatin is densely methylated and wrapped by histones displaying a characteristic subset of post-translational modifications. Growing evidence indicates that these chromatin modifications are not sufficient for silencing. Instead, they are prerequisites for further assembly of higher-order chromatin structures that are refractory to transcription but not fully understood. We show that silencing of transposons in the pericentromeric heterochromatin of Arabidopsis thaliana requires SMC4, a core subunit of condensins I and II, acting in conjunction with CG methylation by MET1 (DNA METHYLTRANSFERASE 1), CHG methylation by CMT3 (CHROMOMETHYLASE 3), the chromatin remodeler DDM1 (DECREASE IN DNA METHYLATION 1), and histone modifications, including histone H3 Lys 27 monomethylation (H3K27me1), imparted by ATXR5 and ATXR6. SMC4/condensin also acts within the mostly euchromatic chromosome arms to suppress conditionally expressed genes involved in flowering or DNA repair, including the DNA glycosylase ROS1, which facilitates DNA demethylation. Collectively, our genome-wide analyses implicate condensin in the suppression of hundreds of loci, acting in both DNA methylation-dependent and methylation-independent pathways.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Centrosoma/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Complejos Multiproteicos/genética , Cromatina/metabolismo , Metilación de ADN/genética , Reparación del ADN/genética , Silenciador del Gen/fisiología , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Heterocromatina/metabolismo , Histonas/metabolismo , Metiltransferasas/genética , Mutación/genética , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
5.
Plant J ; 115(5): 1185-1192, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37228042

RESUMEN

Nucleolus organizer regions (NORs) are eukaryotic chromosomal loci where ribosomal RNA (rRNA) genes are clustered, typically in hundreds to thousands of copies. Transcription of these rRNA genes by RNA polymerase I and processing of their transcripts results in the formation of the nucleolus, the sub-nuclear domain in which ribosomes are assembled. Approximately 90 years ago, cytogenetic observations revealed that NORs inherited from the different parents of an interspecific hybrid sometimes differ in morphology at metaphase. Fifty years ago, those chromosomal differences were found to correlate with differences in rRNA gene transcription and the phenomenon became known as nucleolar dominance. Studies of the past 30 years have revealed that nucleolar dominance results from selective rRNA gene silencing, involving repressive chromatin modifications, and occurs in pure species as well as hybrids. Recent evidence also indicates that silencing depends on the NOR in which an rRNA gene is located, and not on the gene's sequence. In this perspective, we discuss how our thinking about nucleolar dominance has shifted over time from the kilobase scale of individual genes to the megabase scale of NORs and chromosomes and questions that remain unanswered in the search for a genetic and biochemical understanding of the off switch.


Asunto(s)
Nucléolo Celular , ARN Ribosómico , ARN Ribosómico/genética , Nucléolo Celular/genética , Región Organizadora del Nucléolo/genética , Cromosomas
6.
Cell ; 137(3): 498-508, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410546

RESUMEN

DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Argonautas , Sitios de Unión , ADN de Plantas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753485

RESUMEN

In plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24-nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 coimmunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that an interval near the RDR2 active site contacts the Pol IV catalytic subunit, NRPD1, the largest of Pol IV's 12 subunits. Contacts between the catalytic regions of the two enzymes suggests that RDR2 is positioned to rapidly engage the free 3' ends of Pol IV transcripts and convert these single-stranded transcripts into double-stranded RNAs (dsRNAs).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Bicatenario/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Dominio Catalítico/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903670

RESUMEN

RNA-dependent RNA polymerases play essential roles in RNA-mediated gene silencing in eukaryotes. In Arabidopsis, RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) physically interacts with DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and their activities are tightly coupled, with Pol IV transcriptional arrest, induced by the nontemplate DNA strand, somehow enabling RDR2 to engage Pol IV transcripts and generate double-stranded RNAs. The double-stranded RNAs are then released from the Pol IV-RDR2 complex and diced into short-interfering RNAs that guide RNA-directed DNA methylation and silencing. Here we report the structure of full-length RDR2, at an overall resolution of 3.1 Å, determined by cryoelectron microscopy. The N-terminal region contains an RNA-recognition motif adjacent to a positively charged channel that leads to a catalytic center with striking structural homology to the catalytic centers of multisubunit DNA-dependent RNA polymerases. We show that RDR2 initiates 1 to 2 nt internal to the 3' ends of its templates and can transcribe the RNA of an RNA/DNA hybrid, provided that 9 or more nucleotides are unpaired at the RNA's 3' end. Using a nucleic acid configuration that mimics the arrangement of RNA and DNA strands upon Pol IV transcriptional arrest, we show that displacement of the RNA 3' end occurs as the DNA template and nontemplate strands reanneal, enabling RDR2 transcription. These results suggest a model in which Pol IV arrest and backtracking displaces the RNA 3' end as the DNA strands reanneal, allowing RDR2 to engage the RNA and synthesize the complementary strand.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ARN de Planta/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN de Plantas , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Moleculares , Conformación Proteica , ARN de Planta/genética , ARN Polimerasa Dependiente del ARN/genética , Transcripción Genética
9.
Genes Dev ; 30(24): 2649-2650, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087710

RESUMEN

In many eukaryotes, siRNAs bound to Argonaute proteins guide chromatin-modifying enzymes to complementary loci, resulting in transcriptional gene silencing. Multiple lines of evidence indicate that siRNAs base-pair with longer RNAs produced at target loci, but the possibility that siRNAs base-pair directly with DNA remains an attractive hypothesis. In a recent study, Shimada et al. (pp. 2571-2580) conducted experiments that address these alternative hypotheses, yielding additional evidence that fission yeast siRNA-Argonaute silencing complexes are recruited to target loci exclusively via interactions with nascent transcripts.


Asunto(s)
Cromatina , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Argonautas/genética , Heterocromatina , Interferencia de ARN , ARN Interferente Pequeño/genética , Schizosaccharomyces/genética
10.
Genes Dev ; 30(2): 177-90, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744421

RESUMEN

In eukaryotes, scores of excess ribosomal RNA (rRNA) genes are silenced by repressive chromatin modifications. Given the near sequence identity of rRNA genes within a species, it is unclear how specific rRNA genes are reproducibly chosen for silencing. Using Arabidopsis thaliana ecotype (strain) Col-0, a systematic search identified sequence polymorphisms that differ between active and developmentally silenced rRNA gene subtypes. Recombinant inbred mapping populations derived from three different ecotype crosses were then used to map the chromosomal locations of silenced and active RNA gene subtypes. Importantly, silenced and active rRNA gene subtypes are not intermingled. All silenced rRNA gene subtypes mapped to the nucleolus organizer region (NOR) on chromosome 2 (NOR2). All active rRNA gene subtypes mapped to NOR4. Using an engineered A. thaliana line in which a portion of Col-0 chromosome 4 was replaced by sequences of another ecotype, we show that a major rRNA gene subtype silenced at NOR2 is active when introgressed into the genome at NOR4. Collectively, these results reveal that selective rRNA gene silencing is not regulated gene by gene based on mechanisms dependent on subtle gene sequence variation. Instead, we propose that a subchromosomal silencing mechanism operates on a multimegabase scale to inactivate NOR2.


Asunto(s)
Arabidopsis/genética , Dosificación de Gen , Silenciador del Gen , Genes de ARNr/genética , Región Organizadora del Nucléolo/genética , Arabidopsis/crecimiento & desarrollo , Cruzamiento , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Polimorfismo Genético/genética
11.
Nat Rev Mol Cell Biol ; 12(8): 483-92, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21779025

RESUMEN

In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/química , Evolución Molecular , Silenciador del Gen , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína , Secuencias Repetitivas de Aminoácido
12.
Cell ; 135(4): 635-48, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19013275

RESUMEN

Nuclear transcription is not restricted to genes but occurs throughout the intergenic and noncoding space of eukaryotic genomes. The functional significance of this widespread noncoding transcription is mostly unknown. We show that Arabidopsis RNA polymerase IVb/Pol V, a multisubunit nuclear enzyme required for siRNA-mediated gene silencing of transposons and other repeats, transcribes intergenic and noncoding sequences, thereby facilitating heterochromatin formation and silencing of overlapping and adjacent genes. Pol IVb/Pol V transcription requires the chromatin-remodeling protein DRD1 but is independent of siRNA biogenesis. However, Pol IVb/Pol V transcription and siRNA production are both required to silence transposons, suggesting that Pol IVb/Pol V generates RNAs or chromatin structures that serve as scaffolds for siRNA-mediated heterochromatin-forming complexes. Pol IVb/Pol V function provides a solution to a paradox of epigenetic control: the need for transcription in order to transcriptionally silence the same region.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Regulación de la Expresión Génica de las Plantas , Regulación de la Expresión Génica , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Cromatina/química , Cromatina/metabolismo , ADN Intergénico , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Heterocromatina/química , Datos de Secuencia Molecular , ARN Interferente Pequeño/metabolismo , ARN no Traducido , Homología de Secuencia de Aminoácido , Transcripción Genética
13.
Mol Cell ; 54(1): 30-42, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24657166

RESUMEN

In Arabidopsis, multisubunit RNA polymerases IV and V orchestrate RNA-directed DNA methylation (RdDM) and transcriptional silencing, but what identifies the loci to be silenced is unclear. We show that heritable silent locus identity at a specific subset of RdDM targets requires HISTONE DEACETYLASE 6 (HDA6) acting upstream of Pol IV recruitment and siRNA biogenesis. At these loci, epigenetic memory conferring silent locus identity is erased in hda6 mutants such that restoration of HDA6 activity cannot restore siRNA biogenesis or silencing. Silent locus identity is similarly lost in mutants for the cytosine maintenance methyltransferase, MET1. By contrast, pol IV or pol V mutants disrupt silencing without erasing silent locus identity, allowing restoration of Pol IV or Pol V function to restore silencing. Collectively, these observations indicate that silent locus specification and silencing are separable steps that together account for epigenetic inheritance of the silenced state.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Interferencia de ARN , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Elementos Transponibles de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Sitios Genéticos , Genotipo , Herencia , Histona Desacetilasas/metabolismo , Mutación , Fenotipo , ARN Interferente Pequeño/biosíntesis
14.
Mol Cell ; 49(6): 1021-2, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23541038

RESUMEN

A new study (Zemach et al., 2013) suggests that the chromatin remodeling ATPase DDM1 is specifically required for cytosine methylation at linker histone H1-associated heterochromatin, facilitating access by three cytosine methyltransferases, including a previously uncharacterized CHH methylase, CMT2.

15.
Nucleic Acids Res ; 47(17): 9024-9036, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31329950

RESUMEN

In plants, nuclear multisubunit RNA polymerases IV and V are RNA Polymerase II-related enzymes that synthesize non-coding RNAs for RNA-directed DNA methylation (RdDM) and transcriptional gene silencing. Here, we tested the importance of the C-terminal domain (CTD) of Pol IV's largest subunit given that the Pol II CTD mediates multiple aspects of Pol II transcription. We show that the CTD is dispensable for Pol IV catalytic activity and Pol IV termination-dependent activation of RNA-DEPENDENT RNA POLYMERASE 2, which partners with Pol IV to generate dsRNA precursors of the 24 nt siRNAs that guide RdDM. However, 24 nt siRNA levels decrease ∼80% when the CTD is deleted. RNA-dependent cytosine methylation is also reduced, but only ∼20%, suggesting that siRNA levels typically exceed the levels needed for methylation of most loci. Pol IV-dependent loci affected by loss of the CTD are primarily located in chromosome arms, similar to loci dependent CLSY1/2 or SHH1, which are proteins implicated in Pol IV recruitment. However, deletion of the CTD does not phenocopy clsy or shh1 mutants, consistent with the CTD affecting post-recruitment aspects of Pol IV activity at target loci.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , ARN Interferente Pequeño/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosina/química , Citosina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Sitios Genéticos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metiltransferasas/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Secuenciación Completa del Genoma
16.
Nucleic Acids Res ; 47(17): 9037-9052, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31372633

RESUMEN

RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV's largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas , Secuencias de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Genoma de Planta , Plantas Modificadas Genéticamente , Dominios Proteicos/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Retroelementos/genética
17.
Genes Dev ; 27(14): 1545-50, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873938

RESUMEN

Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic-nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Epigénesis Genética , ARN Ribosómico/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Modelos Genéticos , Mutación
18.
Mol Cell ; 48(5): 811-8, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23142082

RESUMEN

In Arabidopsis, RNA-dependent DNA methylation and transcriptional silencing involves three nuclear RNA polymerases that are biochemically undefined: the presumptive DNA-dependent RNA polymerases Pol IV and Pol V and the putative RNA-dependent RNA polymerase RDR2. Here we demonstrate their RNA polymerase activities in vitro. Unlike Pol II, Pols IV and V require an RNA primer, are insensitive to α-amanitin, and differ in their ability to displace the nontemplate DNA strand during transcription. Biogenesis of 24 nt small interfering RNAs (siRNAs), which guide cytosine methylation to corresponding sequences, requires both Pol IV and RDR2, which physically associate in vivo. Whereas Pol IV does not require RDR2 for activity, RDR2 is nonfunctional in the absence of associated Pol IV. These results suggest that the physical and mechanistic coupling of Pol IV and RDR2 results in the channeled synthesis of double-stranded precursors for 24 nt siRNA biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , Plantas Modificadas Genéticamente/enzimología , Interferencia de ARN , ARN Bicatenario/biosíntesis , ARN de Planta/biosíntesis , ARN Interferente Pequeño/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Alfa-Amanitina/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Competitiva , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Unión Proteica , Interferencia de ARN/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/genética , Transcripción Genética
19.
Proc Natl Acad Sci U S A ; 114(14): 3702-3707, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28270603

RESUMEN

Hybrid incompatibility resulting from deleterious gene combinations is thought to be an important step toward reproductive isolation and speciation. Here, we demonstrate involvement of a silent epiallele in hybrid incompatibility. In Arabidopsis thaliana accession Cvi-0, one of the two copies of a duplicated histidine biosynthesis gene, HISN6A, is mutated, making HISN6B essential. In contrast, in accession Col-0, HISN6A is essential because HISN6B is not expressed. Owing to these differences, Cvi-0 × Col-0 hybrid progeny that are homozygous for both Cvi-0 HISN6A and Col-0 HISN6B do not survive. We show that HISN6B of Col-0 is not a defective pseudogene, but a stably silenced epiallele. Mutating HISTONE DEACETYLASE 6 (HDA6), or the cytosine methyltransferase genes MET1 or CMT3, erases HISN6B's silent locus identity, reanimating the gene to circumvent hisn6a lethality and hybrid incompatibility. These results show that HISN6-dependent hybrid lethality is a revertible epigenetic phenomenon and provide additional evidence that epigenetic variation has the potential to limit gene flow between diverging populations of a species.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Epigénesis Genética , Transaminasas/genética , Alelos , Arabidopsis/genética , Quimera , ADN (Citosina-5-)-Metiltransferasas/genética , ADN-Citosina Metilasas/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes Letales , Histona Desacetilasa 6/genética , Mutación
20.
Genes Dev ; 26(9): 945-57, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22549957

RESUMEN

Eukaryotes have hundreds of nearly identical 45S ribosomal RNA (rRNA) genes, each encoding the 18S, 5.8S, and 25S catalytic rRNAs. Because cellular demands for ribosomes and protein synthesis vary during development, the number of active rRNA genes is subject to dosage control. In genetic hybrids, one manifestation of dosage control is nucleolar dominance, an epigenetic phenomenon in which the rRNA genes of one progenitor are repressed. For instance, in Arabidopsis suecica, the allotetraploid hybrid of Arabidopsis thaliana and Arabidopsis arenosa, the A. thaliana-derived rRNA genes are selectively silenced. An analogous phenomenon occurs in nonhybrid A. thaliana, in which specific classes of rRNA gene variants are inactivated. An RNA-mediated knockdown screen identified SUVR4 {SUPPRESSOR OF VARIEGATION 3-9 [SU(VAR)3-9]-RELATED 4} as a histone H3 Lys 9 (H3K9) methyltransferase required for nucleolar dominance in A. suecica. H3K9 methyltransferases are also required for variant-specific silencing in A. thaliana, but SUVH5 [SU(VAR)3-9 HOMOLOG 5] and SUVH6, rather than SUVR4, are the key activities in this genomic context. Mutations disrupting the H3K27 methyltransferases ATXR5 or ATXR6 affect which rRNA gene variants are expressed or silenced, and in atxr5 atxr6 double mutants, dominance relationships among variants are reversed relative to wild type. Interestingly, these changes in gene expression are accompanied by changes in the relative abundance of the rRNA gene variants at the DNA level, including overreplication of the normally silenced class and decreased abundance of the normally dominant class. Collectively, our results indicate that histone methylation can affect both the doses of different variants and their differential silencing through the choice mechanisms that achieve dosage control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de ARNr , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Arabidopsis/genética , Nucléolo Celular/enzimología , Metilación de ADN , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA