Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 681, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796603

RESUMEN

BACKGROUND: Silver nanoparticles (AgNPs) have been used in plant tissue culture as growth stimulants, promoting bud initiation, germination, and rooting. In prior studies, AgNPs were synthesized and characterized by green synthesis using extracts from Beta vulgaris var. cicla (BvAgNP), and their functionality as seed disinfectant and antimicrobial was verified. In this study, we evaluated the effect of BvAgNP on the growth and development of Mammillaria bombycina and Selenicereus undatus in vitro, as well as the expression of glyoxalase genes. METHODS: Explants from M. bombycina and S. undatus in vitro were treated with 25, 50, and 100 mg/L of BvAgNP. After 90 days, morphological characteristics were evaluated, and the expression of glyoxalase genes was analyzed by qPCR. RESULTS: All treatments inhibited rooting for M. bombycina and no bud initiation was observed. S. undatus, showed a maximum response in rooting and bud generation at 25 mg/L of BvAgNP. Scanning electron microscopy (SEM) results exhibited a higher number of vacuoles in stem cells treated with BvAgNP compared to the control for both species. Expression of glyoxalase genes in M. bombycina increased in all treatments, whereas it decreased for S. undatus, however, increasing in roots. CONCLUSIONS: This study presents the effects of BvAgNP on the growth and development of M. bombycina and S. undatus, with the aim of proposing treatments that promote in vitro rooting and bud initiation.


Asunto(s)
Lactoilglutatión Liasa , Nanopartículas del Metal , Plata , Nanopartículas del Metal/química , Plata/farmacología , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/efectos de los fármacos , Beta vulgaris/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Extractos Vegetales/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tioléster Hidrolasas , Cactaceae
2.
Biomacromolecules ; 23(8): 3359-3370, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35900922

RESUMEN

A green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed in vitro antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In vitro, they were able to reduce oxidative stress and inhibit the production of reactive oxygen species by neutrophils and inflammatory cytokines by macrophages. The anti-inflammatory effect observed was related to their antioxidant activity, especially in the case of neutrophils. The particles can thus be especially advantageous as active components of biomaterials modulating the early stages of inflammation. In addition to the immunomodulatory effect, the presence of intrinsically conducting polyaniline can impart cell-instructive properties to the particles. The approach to particle synthesis that we employed─an original one using environmentally friendly and biocompatible horseradish peroxidase─represents a smart way of preparing conducting particles with unique properties, which can be further modified by the stabilizers used.


Asunto(s)
Compuestos de Anilina , Antioxidantes , Compuestos de Anilina/química , Antioxidantes/farmacología , Catálisis , Peroxidasa de Rábano Silvestre , Polimerizacion
3.
Nat Rev Genet ; 17(11): 693-703, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27616569

RESUMEN

Waddington's epigenetic landscape is an abstract metaphor frequently used to represent the relationship between gene activity and cell fates during development. Over the past few years, it has become a useful framework for interpreting results from single-cell transcriptomics experiments. It has led to the proposal that, during fate transitions, cells experience smooth, continuous progressions of global transcriptional activity, which can be captured by (pseudo)temporal dynamics. Here, focusing strictly on the fate decision events, we suggest an alternative view: that fate transitions occur in a discontinuous, stochastic manner whereby signals modulate the probability of the transition events.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Biología Computacional/métodos , Epigénesis Genética/genética , Animales , Humanos , Modelos Genéticos , Procesos Estocásticos
4.
Stem Cells ; 36(12): 1828-1838, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30270482

RESUMEN

Cell fate transitions in mammalian stem cell systems have often been associated with transcriptional heterogeneity; however, existing data have failed to establish a functional or mechanistic link between the two phenomena. Experiments in unicellular organisms support the notion that transcriptional heterogeneity can be used to facilitate adaptability to environmental changes and have identified conserved chromatin-associated factors that modulate levels of transcriptional noise. Herein, we show destabilization of pluripotency-associated gene regulatory networks through increased transcriptional heterogeneity of mouse embryonic stem cells in which paradigmatic histone acetyl-transferase, and candidate noise modulator, Kat2a (yeast orthologue Gcn5), have been inhibited. Functionally, network destabilization associates with reduced pluripotency and accelerated mesendodermal differentiation, with increased probability of transitions into lineage commitment. Thus, we show evidence of a relationship between transcriptional heterogeneity and cell fate transitions through manipulation of the histone acetylation landscape of mouse embryonic stem cells, suggesting a general principle that could be exploited in other normal and malignant stem cell fate transitions. Stem Cells 2018;36:1828-11.


Asunto(s)
Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Heterogeneidad Genética , Humanos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
6.
Molecules ; 21(3): 379, 2016 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-27007358

RESUMEN

Upon addition of gold to silicalite-1 pellets (a MFI-type zeolite), the vapor phase oxidation of ethanol could be addressed to acetaldehyde or acetic acid formation. By optimizing the catalyst composition and reaction conditions, the conversion of ethanol could be tuned to acetaldehyde with 97% selectivity at 71% conversion or to acetic acid with 78% selectivity at total conversion. Considering that unloaded silicalite-1 was found to catalyze the dehydration of ethanol to diethylether or ethene, a green approach for the integrated production of four important chemicals is herein presented. This is based on renewable ethanol as a reagent and a modular catalytic process.


Asunto(s)
Catálisis , Etanol/química , Oxidación-Reducción , Ácido Acético/química , Etilenos/química , Gases/química , Oro/química , Silicatos/química , Zeolitas/química
7.
Angew Chem Int Ed Engl ; 55(46): 14210-14217, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27624999

RESUMEN

Gold catalysis has recently found its first large-scale applications in the chemical industry. This Minireview provides a critical analysis of the success factors and of the main obstacles that had to be overcome on the long way from the discovery to the commercialization of gold catalysts. The insights should be useful to researchers in both academia and industry working on the development of tomorrow's gold catalysts to tackle significant environmental and economic issues.

8.
PLoS Comput Biol ; 9(8): e1003197, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990771

RESUMEN

Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to molecular scenarios of entry into commitment. The model suggests distinct dependencies of different commitment-associated genes on mRNA dynamics and promoter activity, which globally influence the probability of lineage commitment.


Asunto(s)
Diferenciación Celular/genética , Biología Computacional/métodos , Regulación de la Expresión Génica , Modelos Biológicos , Análisis por Conglomerados , Simulación por Computador , Factor de Transcripción GATA2/biosíntesis , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Interleucina-3/biosíntesis , Interleucina-3/genética , Interleucina-3/metabolismo , Modelos Estadísticos , Método de Montecarlo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Procesos Estocásticos
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1900): 20230052, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38432321

RESUMEN

Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.


Asunto(s)
Epigenómica , Leucemia Mieloide Aguda , Animales , Diferenciación Celular , Mutación , Leucemia Mieloide Aguda/genética , Mamíferos
10.
Cell Death Discov ; 10(1): 147, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503729

RESUMEN

Acute myeloid leukaemia (AML) is a haematological malignancy characterised by the accumulation of transformed myeloid progenitors in the bone marrow. Piplartine (PL), also known as piperlongumine, is a pro-oxidant small molecule extracted from peppers that has demonstrated antineoplastic potential in solid tumours and other haematological malignancies. In this work, we explored the potential of PL to treat AML through the use of a combination of cellular and molecular analyses of primary and cultured leukaemia cells in vitro and in vivo. We showed that PL exhibits in vitro cytotoxicity against AML cells, including CD34+ leukaemia-propagating cells, but not healthy haematopoietic progenitors, suggesting anti-leukaemia selectivity. Mechanistically, PL treatment increased reactive oxygen species (ROS) levels and induced ROS-mediated apoptosis in AML cells, which could be prevented by treatment with the antioxidant scavenger N-acetyl-cysteine and the pancaspase inhibitor Z-VAD(OMe)-FMK. PL treatment reduced NFKB1 gene transcription and the level of NF-κB p65 (pS536), which was depleted from the nucleus of AML cells, indicating suppression of NF-κB p65 signalling. Significantly, PL suppressed AML development in a mouse xenograft model, and its combination with current AML treatments (cytarabine, daunorubicin and azacytidine) had synergistic effects, indicating translational therapeutic potential. Taken together, these data position PL as a novel anti-AML candidate drug that can target leukaemia stem/progenitors and is amenable to combinatorial therapeutic strategies.

11.
Chem Soc Rev ; 41(1): 350-69, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21727977

RESUMEN

This critical review aims to update the recent development in the selective oxidation of organic compounds by gold catalysis, highlighting the progress in the last three years. Following the impressive developments in the last decades, several protocols for catalytic oxidation are today available, which are based on the extraordinary properties of gold in terms of catalytic activity, selectivity, reusability and resistance to poisons. Beside many other applications, gold can be recommended for green processes dedicated to fine chemicals, pharmaceuticals and the food industry owing to its recognized bio-compatibility. The collected literature is focused on experiments concerning the oxidation of different chemical groups and could be of interest, in the wide area of organic chemistry, for improving previous processes or for exploring new catalytic pathways (174 references).

12.
Biosci Rep ; 43(1)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36622782

RESUMEN

Acute myeloid leukaemia (AML), typically a disease of elderly adults, affects 8 children per million each year, with the highest paediatric incidence in infants aged 0-2 of 18 per million. Recurrent cytogenetic abnormalities contribute to leukaemia pathogenesis and are an important determinant of leukaemia classification. The t(7;12)(q36;p13) translocation is a high-risk AML subtype exclusively associated with infants and represents the second most common abnormality in this age group. Mechanisms of t(7;12) leukaemogenesis remain poorly understood. The translocation relocates the entire MNX1 gene within the ETV6 locus, but a fusion transcript is present in only half of the patients and its significance is unclear. Instead, research has focused on ectopic MNX1 expression, a defining feature of t(7;12) leukaemia, which has nevertheless failed to produce transformation in conventional disease models. Recently, advances in genome editing technologies have made it possible to recreate the t(7;12) rearrangement at the chromosomal level. Together with recent studies of MNX1 involvement using murine in vivo, in vitro, and organoid-based leukaemia models, specific investigation on the biology of t(7;12) can provide new insights into this AML subtype. In this review, we provide a comprehensive up-to-date analysis of the biological features of t(7;12), and discuss recent advances in mechanistic understanding of the disease which may deliver much-needed therapeutic opportunities to a leukaemia of notoriously poor prognosis.


Asunto(s)
Leucemia Mieloide Aguda , Lactante , Anciano , Humanos , Niño , Animales , Ratones , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patología , Translocación Genética , Genes Homeobox , Factores de Transcripción/genética , Proteínas de Homeodominio/genética
13.
Emerg Top Life Sci ; 7(4): 439-454, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38095554

RESUMEN

Haematopoietic stem cells (HSCs) are the most extensively studied adult stem cells. Yet, six decades after their first description, reproducible and translatable generation of HSC in vitro remains an unmet challenge. HSC production in vitro is confounded by the multi-stage nature of blood production during development. Specification of HSC is a late event in embryonic blood production and depends on physical and chemical cues which remain incompletely characterised. The precise molecular composition of the HSC themselves is incompletely understood, limiting approaches to track their origin in situ in the appropriate cellular, chemical and mechanical context. Embryonic material at the point of HSC emergence is limiting, highlighting the need for an in vitro model of embryonic haematopoietic development in which current knowledge gaps can be addressed and exploited to enable HSC production. Gastruloids are pluripotent stem cell-derived 3-dimensional (3D) cellular aggregates which recapitulate developmental events in gastrulation and early organogenesis with spatial and temporal precision. Gastruloids self-organise multi-tissue structures upon minimal and controlled external cues, and are amenable to live imaging, screening, scaling and physicochemical manipulation to understand and translate tissue formation. In this review, we consider the haematopoietic potential of gastruloids and review early strategies to enhance blood progenitor and HSC production. We highlight possible strategies to achieve HSC production from gastruloids, and discuss the potential of gastruloid systems in illuminating current knowledge gaps in HSC specification.


Asunto(s)
Células Madre Adultas , Células Madre Pluripotentes , Células Madre Hematopoyéticas , Hematopoyesis
14.
Genes (Basel) ; 14(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38002972

RESUMEN

The guava (Psidium guajava L.) is a climacteric fruit with an accelerated post-harvest overripening. miRNAs are small RNA sequences that function as gene regulators in eukaryotes and are essential for their survival and development. In this study, miRNA libraries were constructed, sequenced and analyzed from the breaker and ripe stages of guava fruit cv. Siglo XXI. One hundred and seventy-four mature miRNA sequences from 28 miRNA families were identified. The taxonomic distribution of the guava miRNAs showed a high level of conservation among the dicotyledonous plants. Most of the predicted miRNA target genes were transcription factors and genes involved in the metabolism of phytohormones such as abscisic acid, auxins, and ethylene, as revealed through an ontology enrichment analysis. The miRNA families miR168, miR169, miR396, miR397, and miR482 were classified as being directly associated with maturation, whereas the miRNA families miR160, miR165, miR167, miR3930, miR395, miR398, and miR535 were classified as being indirectly associated. With this study, we intended to increase our knowledge and understanding of the regulatory process involved in the ripening process, thereby providing valuable information for future research on the ripening of guava fruit.


Asunto(s)
MicroARNs , Psidium , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Psidium/genética , Psidium/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
15.
Curr Med Chem ; 29(2): 329-357, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33874868

RESUMEN

Conducting polymers are an outstanding class of materials characterized by electroconductive properties that make them good candidates for applications in several sectors. Among them, polyaniline (PANI) is unique for its extraordinary ability to conduct electricity, biocompatibility, and low toxicity. In spite of its surprising features, to date, PANI has not found application in practical uses due to its low solubility and processability. In order to overcome these limitations, different approaches have been developed, such as polymer grafting processes, PANI-based composites, and blends preparation. The present review describes the most recent advances on PANI applications in biomedical fields, such as antioxidant, antimicrobial and antivirus activity, drug delivery, cancer therapy, etc. In this article, synthetic procedures are also reported which are crucial for the realization of more innovative materials in the future.


Asunto(s)
Compuestos de Anilina , Polímeros , Humanos
16.
Chemosphere ; 286(Pt 3): 131941, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426283

RESUMEN

Recently, the engineering of alternative adsorbents with better functional and sorbing ability towards the purification of wastewaters has received much attention from the scientific community. Currently polymers, in particular, are regarded as attractive soft materials in the field of environmental remediation due to their several unique properties. In this regard, the synthesis method is key point to fabricate polymer-based adsorbent with targeted characteristics. In the present work, four polyaniline (PANIs) samples were synthesized by two alternative chemical approaches, a traditional one and an eco-friendly one, and two different dopants were used, HCl and H2SO4, respectively. All PANIs were characterized for their thermal, optical, morphological, and structural properties and their capability to remove simultaneously dyes and heavy metals from water have been investigated. It was deduced that the sorption ability is dependent on the as-synthesized PANI using different procedures and dopants. All the PANIs from traditional method showed high levels of pollutants removal (from 89 to 97%). Even though the materials obtained from the green way are overall less active, H2SO4-doped corresponding polymer showed high sorption capability (75-97%). Finally, the most performing PANIs were selected for recycling tests exhibiting high sorption efficiency retention up to four runs without any regeneration treatment. Most important, the cycling tests were stopped well before the sample sorption limit could be reached.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Compuestos de Anilina , Colorantes , Agua , Contaminantes Químicos del Agua/análisis
17.
Results Probl Cell Differ ; 70: 71-102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348105

RESUMEN

The organisation of the genome in its home, the cell nucleus, is reliant on a number of different aspects to establish, maintain and alter its functional non-random positioning. The genome is dispersed throughout a cell nucleus in specific chromosome territories which are further divided into topologically associated domains (TADs), where regions of the genome from different and the same chromosomes come together. This organisation is both controlled by DNA and chromatin epigenetic modification and the association of the genome with nuclear structures such as the nuclear lamina, the nucleolus and nuclear bodies and speckles. Indeed, sequences that are associated with the first two structures mentioned are termed lamina-associated domains (LADs) and nucleolar-associated domains (NADs), respectively. The modifications and nuclear structures that regulate genome function are altered through a cell's life from stem cell to differentiated cell through to reversible quiescence and irreversible senescence, and hence impacting on genome organisation, altering it to silence specific genes and permit others to be expressed in a controlled way in different cell types and cell cycle statuses. The structures and enzymes and thus the organisation of the genome can also be deleteriously affected, leading to disease and/or premature ageing.


Asunto(s)
Núcleo Celular , Genoma , Cromatina/metabolismo , Cromosomas , Células Madre
18.
Oncogenesis ; 11(1): 50, 2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057683

RESUMEN

Acute myeloid leukaemia carrying the translocation t(7;12)(q36;p13) is an adverse-risk leukaemia uniquely observed in infants. Despite constituting up to 30% of cases in under 2-year-olds, it remains poorly understood. Known molecular features are ectopic overexpression of the MNX1 gene and generation of a fusion transcript in 50% of patients. Lack of research models has hindered understanding of t(7;12) biology, which has historically focused on MNX1 overexpression rather than the cytogenetic entity itself. Here, we employed CRISPR/Cas9 to generate t(7;12) in the human K562 cell line, and in healthy CD34+ haematopoietic progenitors where the translocation was not sustained in long-term cultures or through serial replating. In contrast, in K562 cells, t(7;12) was propagated in self-renewing clonogenic assays, with sustained myeloid bias in colony formation and baseline depletion of erythroid signatures. Nuclear localisation analysis revealed repositioning of the translocated MNX1 locus to the interior of t(7;12)-harbouring K562 nuclei - a known phenomenon in t(7;12) patients which associates with ectopic overexpression of MNX1. Crucially, the K562-t(7;12) model successfully recapitulated the transcriptional landscape of t(7;12) patient leukaemia. In summary, we engineered a clinically-relevant model of t(7;12) acute myeloid leukaemia with the potential to unravel targetable molecular mechanisms of disease.

19.
J Genet Eng Biotechnol ; 20(1): 3, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34978628

RESUMEN

BACKGROUND: Guava fruit softening is a crucial process during ripening and this process involves a number of enzymes that modifies the cell wall. Two of the enzymes that regulate this process are (a) the ß-1, 4-endoglucanase 17 (BEG) which hydrolyze ß-1, 4 bonds from cellulose and hemicellulose, and (b) ß-galactosidase (BGA) that hydrolyzes pectin chains. Bioinformatics and expression analysis information on these genes is limited in guava fruit. RESULTS: A fragment of a ß-1, 4-endoglucanase 17 (PgE17), and another of a ß-galactosidase (PgGa1) were identified. These sequences have a similarity of more than 85% with those reported in the NCBI database. In the guava genome, one homologous sequence was found for PgE17 in Chr 4 and two homologous to PgGa1: one in Chr 3 and the other one in Chr 6. Putative protein PgE17 contains part of the glyco_hydro_9 domain. Putative protein PgGa1 has a part of the glyco_hydro_35 domain. Phylogenetic analysis of PgE17 and PgGa1 revealed that both are highly conserved inside the Myrtaceae family. In silico expression analysis showed that both PgE17 and PgGa1 work in a coordinated way with other cell wall modifier enzymes. Expression of these genes was found in all the guava samples analyzed. However, the highest expression was found in the fruit in the breaking and ripe states. CONCLUSIONS: A ß-1, 4-endoglucanase 17, and ß-galactosidase 1 sequences were identified. PgE17 and PgGa1 are expressed in all the plant tissues, and fruit ripening states. Although, the highest expression was on breaker and ripe states.

20.
Sci Adv ; 8(31): eabn4886, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921412

RESUMEN

Transcriptional variability facilitates stochastic cell diversification and can in turn underpin adaptation to stress or injury. We hypothesize that it may analogously facilitate progression of premalignancy to cancer. To investigate this, we initiated preleukemia in mouse cells with enhanced transcriptional variability due to conditional disruption of the histone lysine acetyltransferase gene Kat2a. By combining single-cell RNA sequencing of preleukemia with functional analysis of transformation, we show that Kat2a loss results in global variegation of cell identity and accumulation of preleukemic cells. Leukemia progression is subsequently facilitated by destabilization of ribosome biogenesis and protein synthesis, which confer a transient transformation advantage. The contribution of transcriptional variability to early cancer evolution reflects a generic role in promoting cell fate transitions, which, in the case of well-adapted malignancies, contrastingly differentiates and depletes cancer stem cells. That is, transcriptional variability confers forward momentum to cell fate systems, with differential multistage impact throughout cancer evolution.


Asunto(s)
Leucemia , Preleucemia , Animales , Diferenciación Celular , Leucemia/genética , Ratones , Preleucemia/genética , Preleucemia/patología , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA