Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(5)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37989593

RESUMEN

Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.


Asunto(s)
Calcio , Neocórtex , Masculino , Femenino , Ratones , Animales , Calcio/fisiología , Neuronas/fisiología , Dendritas/fisiología , Células Piramidales/fisiología , Neocórtex/fisiología
2.
PLoS Comput Biol ; 14(11): e1006517, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419015

RESUMEN

Neural oscillations have been recorded and implicated in many different basic brain and cognitive processes. For example, oscillatory neural activity has been suggested to play a role in binding and in the maintenance of information in working memory. With respect to the latter, the majority of work has focused primarily on oscillations in terms of providing a "code" in working memory. However, oscillations may additionally play a fundamental role by enabling or facilitating essential properties and behaviors that neuronal networks must exhibit in order to produce functional working memory and the processes it supports, such as combining items in memory into bound objects or separating bound objects into distinct items. In the present work, we present a biologically plausible working memory model and demonstrate that specific types of stable oscillatory dynamics that arise may play critical roles in providing mechanisms for working memory and the cognitive functions that it supports. Specifically, these roles include (1) enabling a range of different types of binding, (2) both enabling and limiting capacities of bound and distinct items held active in working memory, and (3) facilitating transitions between active working memory states as required in cognitive function. Several key results arise within the examinations, such as the occurrence of different network capacities for working memory and binding, differences in processing times for transitions in working memory states, and the emergence of a combinatorially rich and complex range of oscillatory states that are sufficient to map onto a wide range of cognitive operations supported by working memory, such as variable binding, reasoning, and language. In particular, we show that these oscillatory states and their transitions can provide a specific instantiation of current established connectionist models in representing these functions. Finally, we further characterize the dependence of the relevant oscillatory solutions on certain critical parameters, including mutual inhibition and synaptic timescales.


Asunto(s)
Memoria a Corto Plazo , Neuronas/fisiología , Encéfalo/fisiología , Cognición , Electroencefalografía , Humanos , Modelos Neurológicos
3.
Sci Data ; 10(1): 287, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198203

RESUMEN

The apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number of theories in computational neuroscience postulate a unique role for apical dendrites in learning. However, due to technical challenges in data collection, little data is available for comparing the responses of apical dendrites to cell bodies over multiple days. Here we present a dataset collected through the Allen Institute Mindscope's OpenScope program that addresses this need. This dataset comprises high-quality two-photon calcium imaging from the apical dendrites and the cell bodies of visual cortical pyramidal neurons, acquired over multiple days in awake, behaving mice that were presented with visual stimuli. Many of the cell bodies and dendrite segments were tracked over days, enabling analyses of how their responses change over time. This dataset allows neuroscientists to explore the differences between apical and somatic processing and plasticity.


Asunto(s)
Células Piramidales , Corteza Visual , Animales , Ratones , Cuerpo Celular , Dendritas/fisiología , Neuronas , Células Piramidales/fisiología , Corteza Visual/fisiología
4.
J Biol Phys ; 38(3): 397-404, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23729905

RESUMEN

It is known that the presence of calcium ions (Ca(2 + )) is necessary for the enterobacterial virus ΦX174 to inject its DNA into the host cell, and that some mutations in the major capsid proteins lead to better survivability at higher temperatures. Our goal in the current study is to determine the physical changes in both the wild-type and mutant virus due to the binding of Ca(2 + ). Thus, we performed molecular dynamics simulations of the ΦX174 major capsid protein complex with and without Ca(2 + ) bound. Our results show that binding of Ca(2 + ) leads to energetic and dynamical changes in the virus proteins. In particular, the results suggest that binding of Ca(2 + ) is energetically favorable and that the mutation leads to increased fluctuations of the protein complex (especially with the calcium ions bound to the complex), which may increase the rate of genome packaging and ejection for ΦX174.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA