Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2221244120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252999

RESUMEN

Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.


Asunto(s)
Miofibrillas , Troponina T , Humanos , Miofibrillas/genética , Miofibrillas/patología , Troponina T/genética , Troponina T/química , Actinas/genética , Mutación , Citoesqueleto de Actina/genética , Miosinas , Calcio
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888578

RESUMEN

Fast skeletal myosin-binding protein-C (fMyBP-C) is one of three MyBP-C paralogs and is predominantly expressed in fast skeletal muscle. Mutations in the gene that encodes fMyBP-C, MYBPC2, are associated with distal arthrogryposis, while loss of fMyBP-C protein is associated with diseased muscle. However, the functional and structural roles of fMyBP-C in skeletal muscle remain unclear. To address this gap, we generated a homozygous fMyBP-C knockout mouse (C2-/-) and characterized it both in vivo and in vitro compared to wild-type mice. Ablation of fMyBP-C was benign in terms of muscle weight, fiber type, cross-sectional area, and sarcomere ultrastructure. However, grip strength and plantar flexor muscle strength were significantly decreased in C2-/- mice. Peak isometric tetanic force and isotonic speed of contraction were significantly reduced in isolated extensor digitorum longus (EDL) from C2-/- mice. Small-angle X-ray diffraction of C2-/- EDL muscle showed significantly increased equatorial intensity ratio during contraction, indicating a greater shift of myosin heads toward actin, while MLL4 layer line intensity was decreased at rest, indicating less ordered myosin heads. Interfilament lattice spacing increased significantly in C2-/- EDL muscle. Consistent with these findings, we observed a significant reduction of steady-state isometric force during Ca2+-activation, decreased myofilament calcium sensitivity, and sinusoidal stiffness in skinned EDL muscle fibers from C2-/- mice. Finally, C2-/- muscles displayed disruption of inflammatory and regenerative pathways, along with increased muscle damage upon mechanical overload. Together, our data suggest that fMyBP-C is essential for maximal speed and force of contraction, sarcomere integrity, and calcium sensitivity in fast-twitch muscle.


Asunto(s)
Proteínas Portadoras/metabolismo , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Contracción Isométrica/fisiología , Ratones , Fuerza Muscular , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Miosinas/metabolismo , Sarcómeros/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686151

RESUMEN

Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.


Asunto(s)
Mecanotransducción Celular , Miocitos Cardíacos , Animales , Núcleo Celular , Membrana Nuclear , Citosol
4.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834023

RESUMEN

The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.


Asunto(s)
Actinina , Miofibrillas , Humanos , Actinina/genética , Actinina/metabolismo , Conectina/genética , Conectina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Sarcómeros/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35955883

RESUMEN

Arrhythmogenic Cardiomyopathy (ACM), a Mendelian disorder that can affect both left and right ventricles, is most often associated with pathogenic desmosomal variants that can lead to fibrofatty replacement of the myocardium, a pathological hallmark of this disease. Current therapies are aimed to prevent the worsening of disease phenotypes and sudden cardiac death (SCD). Despite the use of implantable cardioverter defibrillators (ICDs) there is no present therapy that would mitigate the loss in electrical signal and propagation by these fibrofatty barriers. Recent studies have shown the influence of forced vs. voluntary exercise in a variety of healthy and diseased mice; more specifically, that exercised mice show increased Connexin-43 (Cx43) expression levels. Fascinatingly, increased Cx43 expression ameliorated the abnormal electrical signal conduction in the myocardium of diseased mice. These findings point to a major translational pitfall in current therapeutics for ACM patients, who are advised to completely cease exercising and already demonstrate reduced Cx43 levels at the myocyte intercalated disc. Considering cardiac dysfunction in ACM arises from the loss of cardiomyocytes and electrical signal conduction abnormalities, an increase in Cx43 expression-promoted by low to moderate intensity exercise and/or gene therapy-could very well improve cardiac function in ACM patients.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Animales , Antiarrítmicos , Displasia Ventricular Derecha Arritmogénica/genética , Trastorno del Sistema de Conducción Cardíaco , Conexina 43/metabolismo , Muerte Súbita Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ratones , Miocardio/metabolismo
6.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430389

RESUMEN

Arrhythmogenic Cardiomyopathy (ACM) is a familial heart disease, characterized by contractile dysfunction, ventricular arrhythmias (VAs), and the risk of sudden cardiac death. Currently, implantable cardioverter defibrillators and antiarrhythmics are the mainstays in ACM therapeutics. Angiotensin receptor blockers (ARBs) have been highlighted in the treatment of heart diseases, including ACM. Yet, recent research has additionally implicated ARBs in the genesis of VAs and myocardial lipolysis via the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. The latter is of particular interest, as fibrofatty infiltration is a pathological hallmark in ACM. Here, we tested two ARBs, Valsartan and Telmisartan, and the PPAR agonist, Rosiglitazone, in an animal model of ACM, homozygous Desmoglein-2 mutant mice (Dsg2mut/mut). Cardiac function, premature ventricular contractions (PVCs), fibrofatty scars, PPARα/γ protein levels, and PPAR-mediated mRNA transcripts were assessed. Of note, not a single mouse treated with Rosiglitazone made it to the study endpoint (i.e., 100% mortality: n = 5/5). Telmisartan-treated Dsg2mut/mut mice displayed the preservation of contractile function (percent ejection fraction [%EF]; 74.8 ± 6.8%EF) compared to Vehicle- (42.5 ± 5.6%EF) and Valsartan-treated (63.1 ± 4.4%EF) mice. However, Telmisartan-treated Dsg2mut/mut mice showed increased cardiac wall motion abnormalities, augmented %PVCs, electrocardiographic repolarization/depolarization abnormalities, larger fibrotic lesions, and increased expression of PPARy-regulated gene transcripts compared to their Dsg2mut/mut counterparts. Alternatively, Valsartan-treated Dsg2mut/mut mice harbored fewer myocardial scars, reduced %PVC, and increased Wnt-mediated transcripts. Considering our findings, caution should be taken by physicians when prescribing medications that may increase PPARy signaling in patients with ACM.


Asunto(s)
Cardiomiopatías , Cardiopatías , Animales , Ratones , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cicatriz , PPAR alfa , Rosiglitazona , Telmisartán/farmacología
7.
J Biol Chem ; 294(51): 19535-19545, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31712308

RESUMEN

Striated muscle is activated by myosin- and actin-linked processes, with the latter being regulated through changes in the position of tropomyosin relative to the actin surface. The C-terminal region of cardiac troponin T (TnT), a tropomyosin-associated protein, is required for full TnT inactivation at low Ca2+ and for limiting its activation at saturating Ca2+ Here, we investigated whether basic residues in this TnT region are involved in these activities, whether the TnT C terminus undergoes Ca2+-dependent conformational changes, and whether these residues affect cardiac muscle contraction. We generated a human cardiac TnT variant in which we replaced seven C-terminal Lys and Arg residues with Ala and added a Cys residue at either position 289 or 275 to affix a fluorescent probe. At pCa 3.7, actin filaments containing high-alanine TnT had an elevated ATPase rate like that obtained when the last TnT 14 residues were deleted. Acrylodan-tropomyosin fluorescence changes and S1-actin binding kinetics revealed that at pCa 8, the high-alanine TnT-containing filaments did not enter the first inactive state. FRET analyses indicated that the C-terminal TnT region approached Cys-190 of tropomyosin as actin filaments transitioned to the inactive B state; that transition was abolished with high-alanine TnT. High-alanine TnT-containing cardiac muscle preparations had increased Ca2+ sensitivity of both steady-state isometric force and sinusoidal stiffness as well as increased maximum steady-state isometric force and sinusoidal stiffness. We conclude that C-terminal basic residues in cardiac TnT are critical for the regulation of cardiac muscle contraction.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Calcio/química , Troponina T/química , Troponina T/fisiología , Adenosina Trifosfatasas/química , Alanina/química , Animales , Arginina/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Humanos , Cinética , Lisina/química , Contracción Muscular , Mutación , Miosinas/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Conejos , Estrés Mecánico , Porcinos , Tropomiosina/química
8.
J Biol Chem ; 294(52): 20054-20069, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31748410

RESUMEN

Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.


Asunto(s)
Troponina C/metabolismo , Troponina T/metabolismo , Sitios de Unión , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Femenino , Humanos , Masculino , Mutagénesis Sitio-Dirigida , Contracción Miocárdica , Miocardio/metabolismo , Miofibrillas/fisiología , Resonancia Magnética Nuclear Biomolecular , Linaje , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Troponina C/química , Troponina T/química , Troponina T/genética
9.
Arch Biochem Biophys ; 661: 125-131, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445044

RESUMEN

Mutations in cardiac troponin T (TnT) associated with hypertrophic cardiomyopathy generally lead to an increase in the Ca2+ sensitivity of contraction and susceptibility to arrhythmias. In contrast, TnT mutations linked to dilated cardiomyopathy decrease the Ca2+ sensitivity of contraction. Here we tested the hypothesis that two TnT disease mutations with opposite effects on myofilament Ca2+ sensitivity can attenuate each other's phenotype. We crossed transgenic mice expressing the HCM TnT-I79N mutation (I79N) with a DCM knock-in mouse model carrying the heterozygous TnT-R141W mutation (HET). The results of the Ca2+ sensitivity in skinned cardiac muscle preparations ranked from highest to lowest were as follow: I79N > I79N/HET > NTg > HET. Echocardiographic measurements revealed an improvement in hemodynamic parameters in I79N/HET compared to I79N and normalization of left ventricular dimensions and volumes compared to both I79N and HET. Ex vivo testing showed that the I79N/HET mouse hearts had reduced arrhythmia susceptibility compared to I79N mice. These results suggest that two disease mutations in TnT that have opposite effects on the myofilament Ca2+ sensitivity can paradoxically ameliorate each other's disease phenotype. Normalizing myofilament Ca2+ sensitivity may be a promising new treatment approach for a variety of diseases.


Asunto(s)
Cardiomiopatía Dilatada , Ecocardiografía , Electrocardiografía , Mutación Missense , Miofibrillas/metabolismo , Troponina T , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Ratones , Ratones Transgénicos , Miofibrillas/patología , Troponina T/genética , Troponina T/metabolismo
10.
J Biol Chem ; 292(6): 2379-2394, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28049727

RESUMEN

Hypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies and a major cause of sudden death in young athletes. The Ca2+ sensor of the sarcomere, cardiac troponin C (cTnC), plays an important role in regulating muscle contraction. Although several cardiomyopathy-causing mutations have been identified in cTnC, the limited information about their structural defects has been mapped to the HCM phenotype. Here, we used high-resolution electron-spray ionization mass spectrometry (ESI-MS), Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD), and affinity measurements of cTnC for the thin filament in reconstituted papillary muscles to provide evidence of an allosteric mechanism in mutant cTnC that may play a role to the HCM phenotype. We showed that the D145E mutation leads to altered dynamics on a µs-ms time scale and deactivates both of the divalent cation-binding sites of the cTnC C-domain. CPMG-RD captured a low populated protein-folding conformation triggered by the Glu-145 replacement of Asp. Paradoxically, although D145E C-domain was unable to bind Ca2+, these changes along its backbone allowed it to attach more firmly to thin filaments than the wild-type isoform, providing evidence for an allosteric response of the Ca2+-binding site II in the N-domain. Our findings explain how the effects of an HCM mutation in the C-domain reflect up into the N-domain to cause an increase of Ca2+ affinity in site II, thus opening up new insights into the HCM phenotype.


Asunto(s)
Mutación , Miocardio/metabolismo , Troponina C/metabolismo , Regulación Alostérica , Animales , Cardiomiopatía Hipertrófica/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Ratas , Ratas Wistar , Análisis Espectral/métodos , Troponina C/química , Troponina C/genética
11.
Biochim Biophys Acta ; 1850(2): 365-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450489

RESUMEN

BACKGROUND: Dilated and hypertrophic cardiomyopathy mutations in troponin can blunt effects of protein kinase A (PKA) phosphorylation of cardiac troponin I (cTnI), decreasing myofilament Ca2+-sensitivity; however this effect has never been tested for restrictive cardiomyopathy (RCM) mutants. This study explores whether an RCM cardiac troponin T mutant (cTnT-ΔE96) interferes with convergent PKA regulation and if TnT instability contributes to greatly enhanced Ca2+-sensitivity in skinned fibers. METHODS: Force of contraction in skinned cardiac porcine fiber and spectroscopic studies were performed. RESULTS: A decrease of -0.26 and -0.25 pCa units in Ca2+-sensitivity of contraction after PKA incubation was observed for skinned fibers incorporated with WT or cTnT-ΔE96, respectively. To further assess whether cTnT-ΔE96 interferes solely with transmission of cTnI phosphorylation effects, skinned fibers were reconstituted with PKA pseudo-phosphorylated cTnI (cTnI-SS/DD.cTnC). Fibers displaced with cTnT-WT, reconstituted with cTnI-SS/DD.cTnC decreased Ca2+-sensitivity of force (pCa50=5.61) compared to control cTnI-WT.cTnC (pCa50=5.75), similarly affecting cTnT-ΔE96 (pCa50=6.03) compared to control \cTnI-WT.cTnC (pCa50=6.14). Fluorescence studies measuring cTnC(IAANS) Ca2+-affinity changes due to cTnT-ΔE96 indicated that higher complexity (thin filament) better recapitulates skinned fiber Ca2+ sensitive changes. Circular dichroism revealed reduced α-helicity and earlier thermal unfolding for cTnT-ΔE96 compared to WT. CONCLUSIONS: Although ineffective in decreasing myofilament Ca2+-sensitivity to normal levels, cTnT-ΔE96 does not interfere with PKA cTnI phosphorylation mediated effects; 2) cTnT-ΔE96 requires actin to increase cTnC Ca2+-affinity; and 3) deletion of E96 reduces cTnT stability, likely disrupting crucial thin filament interactions. GENERAL SIGNIFICANCE: The pathological effect of cTnT-ΔE96 is largely manifested by dramatic myofilament Ca2+-sensitization which still persists even after PKA phosphorylation mediated Ca2+-desensitization.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Mutación , Miocardio/metabolismo , Troponina T/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Humanos , Miocardio/patología , Miofibrillas/genética , Miofibrillas/metabolismo , Miofibrillas/patología , Fosforilación/genética , Estabilidad Proteica , Porcinos , Troponina T/genética
12.
J Mol Cell Cardiol ; 60: 8-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23570978

RESUMEN

Myocardial infarction (MI) is a major risk for ventricular arrhythmia. Pause-triggered ventricular arrhythmia can be caused by increased myofilament Ca binding due to sarcomeric mutations or Ca-sensitizing compounds. Myofilament Ca sensitivity is also increased after MI. Here we hypothesize that MI increases risk for pause-triggered ventricular arrhythmias, which can be prevented by myofilament Ca-desensitization and contractile uncoupling. To test this hypothesis, we generated a murine chronic MI model using male B6SJLF1/J mice (n=40) that underwent permanent ligation of the left anterior descending coronary artery. 4 weeks post MI, cardiac structure, function and myofilament Ca sensitivity were evaluated. Pause-dependent arrhythmia susceptibility was quantified in isolated hearts with pacing trains of increasing frequency, followed by a pause and an extra stimulus. Coronary ligation resulted in a mean infarct size of 39.6±5.7% LV and fractional shortening on echocardiography was reduced by 40% compared to non-infarcted controls. Myofilament Ca sensitivity was significantly increased in post MI hearts (pCa50: Control=5.66±0.03; MI=5.84±0.05; P<0.01). Exposure to the Ca desensitizer/contractile uncoupler blebbistatin (BLEB, 3 µM) reduced myofilament Ca sensitivity of MI hearts to that of control hearts and selectively reduced the frequency of post-pause ectopic beats (MI 0.12±0.04 vs MI+BLEB 0.01±0.005 PVC/pause; P=0.02). BLEB also reduced the incidence of ventricular tachycardia in chronic MI hearts from 59% to 10% (P<0.05). We conclude that chronic MI hearts exhibit increased myofilament Ca sensitivity and pause-triggered ventricular arrhythmias, which can be prevented by blebbistatin. Decreasing myofilament Ca sensitivity may be a strategy to reduce arrhythmia burden after MI.


Asunto(s)
Calcio/metabolismo , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miofibrillas/metabolismo , Taquicardia Ventricular/metabolismo , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Masculino , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Miofibrillas/patología , Taquicardia Ventricular/patología
13.
J Biol Chem ; 287(3): 2156-67, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22086914

RESUMEN

The R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for ß-adrenergic-activated protein kinase A (PKA)-mediated phosphorylation. The mechanisms by which this mutation leads to heart disease are still unclear. Therefore, we generated cTnI knock-in mouse models carrying an R21C mutation to evaluate the resultant functional consequences. Measuring the in vivo levels of incorporated mutant and WT cTnI, and their basal phosphorylation levels by top-down mass spectrometry demonstrated: 1) a dominant-negative effect such that, the R21C+/- hearts incorporated 24.9% of the mutant cTnI within the myofilament; and 2) the R21C mutation abolished the in vivo phosphorylation of Ser(23)/Ser(24) in the mutant cTnI. Adult heterozygous (R21C+/-) and homozygous (R21C+/+) mutant mice activated the fetal gene program and developed a remarkable degree of cardiac hypertrophy and fibrosis. Investigation of cardiac skinned fibers isolated from WT and heterozygous mice revealed that the WT cTnI was completely phosphorylated at Ser(23)/Ser(24) unless the mice were pre-treated with propranolol. After propranolol treatment (-PKA), the pCa-tension relationships of all three mice (i.e. WT, R21C+/-, and R21C+/+) were essentially the same. However, after treatment with propranolol and PKA, the R21C cTnI mutation reduced (R21C+/-) or abolished (R21C+/+) the well known decrease in the Ca(2+) sensitivity of tension that accompanies Ser(23)/Ser(24) cTnI phosphorylation. Altogether, the combined effects of the R21C mutation appear to contribute toward the development of HCM and suggest that another physiological role for the phosphorylation of Ser(23)/Ser(24) in cTnI is to prevent cardiac hypertrophy.


Asunto(s)
Sustitución de Aminoácidos , Cardiomiopatía Hipertrófica Familiar/metabolismo , Mutación Missense , Miocardio/metabolismo , Miofibrillas/metabolismo , Troponina I/metabolismo , Animales , Antiarrítmicos/farmacología , Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/patología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibrosis Endomiocárdica/genética , Fibrosis Endomiocárdica/metabolismo , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Mutantes , Miocardio/patología , Miofibrillas/genética , Miofibrillas/patología , Fosforilación/genética , Propranolol/farmacología , Troponina I/genética
14.
J Biol Chem ; 287(38): 31845-55, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22815480

RESUMEN

Defined as clinically unexplained hypertrophy of the left ventricle, hypertrophic cardiomyopathy (HCM) is traditionally understood as a disease of the cardiac sarcomere. Mutations in TNNC1-encoded cardiac troponin C (cTnC) are a relatively rare cause of HCM. Here, we report clinical and functional characterization of a novel TNNC1 mutation, A31S, identified in a pediatric HCM proband with multiple episodes of ventricular fibrillation and aborted sudden cardiac death. Diagnosed at age 5, the proband is family history-negative for HCM or sudden cardiac death, suggesting a de novo mutation. TnC-extracted cardiac skinned fibers were reconstituted with the cTnC-A31S mutant, which increased Ca(2+) sensitivity with no effect on the maximal contractile force generation. Reconstituted actomyosin ATPase assays with 50% cTnC-A31S:50% cTnC-WT demonstrated Ca(2+) sensitivity that was intermediate between 100% cTnC-A31S and 100% cTnC-WT, whereas the mutant increased the activation of the actomyosin ATPase without affecting the inhibitory qualities of the ATPase. The secondary structure of the cTnC mutant was evaluated by circular dichroism, which did not indicate global changes in structure. Fluorescence studies demonstrated increased Ca(2+) affinity in isolated cTnC, the troponin complex, thin filament, and to a lesser degree, thin filament with myosin subfragment 1. These results suggest that this mutation has a direct effect on the Ca(2+) sensitivity of the myofilament, which may alter Ca(2+) handling and contribute to the arrhythmogenesis observed in the proband. In summary, we report a novel mutation in the TNNC1 gene that is associated with HCM pathogenesis and may predispose to the pathogenesis of a fatal arrhythmogenic subtype of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Predisposición Genética a la Enfermedad , Mutación , Miocardio/metabolismo , Troponina C/genética , Troponina C/metabolismo , Fibrilación Ventricular/genética , Alelos , Sitios de Unión , Calcio/química , Calcio/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Dicroismo Circular , Clonación Molecular , Estudios de Cohortes , Humanos , Conformación Molecular , Miofibrillas/metabolismo , Miosinas/química , Fibrilación Ventricular/fisiopatología
15.
J Biol Chem ; 287(44): 37362-70, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22977240

RESUMEN

Human slow skeletal troponin T (HSSTnT) shares a high degree of homology with cardiac TnT (CTnT). Although the presence of HSSTnT has not been confirmed in the heart at the protein level, detectable levels of HSSTnT mRNA have been found. Whether HSSTnT isoforms are expressed transiently remains unknown. Because transient re-expression of HSSTnT may be a potential mechanism of regulating function, we explored the effect of HSSTnT on the regulation of cardiac muscle. At least three HSSTnT isoforms have been found to exist in slow skeletal muscle: HSSTnT1 (+exons 5 and 12), HSSTnT2 (+exon 5, -exon 12), and HSSTnT3 (-exons 5 and 12). Another isoform, HSSTnT hypothetical (Hyp) (-exon 5, +exon 12), has only been found at the mRNA level. Compared with HCTnT3 (adult isoform), Tn complexes containing HSSTnT1, -2, and -3 did not alter the actomyosin ATPase activation and inhibition in the presence and absence of Ca(2+), respectively. HSSTnTHyp was not evaluated as it did not form a Tn complex under a variety of conditions. Porcine papillary skinned fibers displaced with HSSTnT1, -2, or -3 and reconstituted with human cardiac troponin I and troponin C (HCTnI·TnC) complex showed a decrease in the Ca(2+) sensitivity of force development and an increase in maximal recovered force (HSSTnT1 and -3) compared with HCTnT3. In contrast, HSSTnTHyp showed an increase in the Ca(2+) sensitivity of force development. This suggests that re- or overexpression of specific SSTnT isoforms might have therapeutic potential in the failing heart because they increase the maximal force of contraction. In addition, circular dichroism and proteolytic digestion experiments revealed structural differences between HSSTnT isoforms and HCTnT3 and that HSSTnT1 is more susceptible to calpain and trypsin proteolysis than the other HSSTnTs. Overall, HSSTnT isoforms despite being homologues of CTnT may display distinct functional properties in muscle regulation.


Asunto(s)
Contracción Miocárdica , Miocardio/citología , Miocitos Cardíacos/fisiología , Troponina T/fisiología , Animales , Calcio/fisiología , Calpaína/química , Dicroismo Circular , Humanos , Técnicas In Vitro , Miocardio/enzimología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Estructura Secundaria de Proteína , Proteolisis , Sus scrofa , Troponina T/química , Troponina T/metabolismo , Tripsina/química
16.
Exp Mol Med ; 55(3): 502-509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854776

RESUMEN

Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Miocardio/metabolismo , Miosinas/genética , Miosinas/metabolismo , Mutación
17.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076858

RESUMEN

Skeletal muscle is the largest organ in the body, responsible for gross movement and metabolic regulation. Recently, variants in the MYBPC1 gene have been implicated in a variety of developmental muscle diseases, such as distal arthrogryposis. How MYBPC1 variants cause disease is not well understood. Here, through a collection of novel gene-edited mouse models, we define a critical role for slow myosin binding protein-C (sMyBP-C), encoded by MYBPC1, across muscle development, growth, and maintenance during prenatal, perinatal, postnatal and adult stages. Specifically, Mybpc1 knockout mice exhibited early postnatal lethality and impaired skeletal muscle formation and structure, skeletal deformity, and respiratory failure. Moreover, a conditional knockout of Mybpc1 in perinatal, postnatal and adult stages demonstrates impaired postnatal muscle growth and function secondary to disrupted actomyosin interaction and sarcomere structural integrity. These findings confirm the essential role of sMyBP-C in skeletal muscle and reveal specific functions in both prenatal embryonic musculoskeletal development and postnatal muscle growth and function.

18.
J Biol Chem ; 286(2): 1005-13, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21056975

RESUMEN

This spectroscopic study examined the steady-state and kinetic parameters governing the cross-bridge effect on the increased Ca(2+) affinity of hypertrophic cardiomyopathy-cardiac troponin C (HCM-cTnC) mutants. Previously, we found that incorporation of the A8V and D145E HCM-cTnC mutants, but not E134D into thin filaments (TFs), increased the apparent Ca(2+) affinity relative to TFs containing the WT protein. Here, we show that the addition of myosin subfragment 1 (S1) to TFs reconstituted with these mutants in the absence of MgATP(2-), the condition conducive to rigor cross-bridge formation, further increased the apparent Ca(2+) affinity. Stopped-flow fluorescence techniques were used to determine the kinetics of Ca(2+) dissociation (k(off)) from the cTnC mutants in the presence of TFs and S1. At a high level of complexity (i.e. TF + S1), an increase in the Ca(2+) affinity and decrease in k(off) was achieved for the A8V and D145E mutants when compared with WT. Therefore, it appears that the cTnC Ca(2+) off-rate is most likely to be affected rather than the Ca(2+) on rate. At all levels of TF complexity, the results obtained with the E134D mutant reproduced those seen with the WT protein. We conclude that strong cross-bridges potentiate the Ca(2+)-sensitizing effect of HCM-cTnC mutants on the myofilament. Finally, the slower k(off) from the A8V and D145E mutants can be directly correlated with the diastolic dysfunction seen in these patients.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Hipertrófica , Miocitos Cardíacos/fisiología , Troponina C , Citoesqueleto de Actina/fisiología , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Humanos , Cinética , Mutagénesis , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Subfragmentos de Miosina/metabolismo , Conformación Proteica , Conejos , Porcinos , Troponina C/química , Troponina C/genética , Troponina C/metabolismo
19.
J Biol Chem ; 286(39): 34404-12, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832052

RESUMEN

TNNC1, which encodes cardiac troponin C (cTnC), remains elusive as a dilated cardiomyopathy (DCM) gene. Here, we report the clinical, genetic, and functional characterization of four TNNC1 rare variants (Y5H, M103I, D145E, and I148V), all previously reported by us in association with DCM (Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., and Gonzalez-Quintana, J. (2010) Circ. Cardiovasc. Genet. 3, 155-161); in the previous study, two variants (Y5H and D145E) were identified in subjects who also carried MYH7 and MYBPC3 rare variants, respectively. Functional studies using the recombinant human mutant cTnC proteins reconstituted into porcine papillary skinned fibers showed decreased Ca(2+) sensitivity of force development (Y5H and M103I). Furthermore, the cTnC mutants diminished (Y5H and I148V) or abolished (M103I) the effects of PKA phosphorylation on Ca(2+) sensitivity. Only M103I decreased the troponin activation properties of the actomyosin ATPase when Ca(2+) was present. CD spectroscopic studies of apo (absence of divalent cations)-, Mg(2+)-, and Ca(2+)/Mg(2+)-bound states indicated that all of the cTnC mutants (except I148V in the Ca(2+)/Mg(2+) condition) decreased the α-helical content. These results suggest that each mutation alters the function/ability of the myofilament to bind Ca(2+) as a result of modifications in cTnC structure. One variant (D145E) that was previously reported in association with hypertrophic cardiomyopathy and that produced results in vivo in this study consistent with prior hypertrophic cardiomyopathy functional studies was found associated with the MYBPC3 P910T rare variant, likely contributing to the observed DCM phenotype. We conclude that these rare variants alter the regulation of contraction in some way, and the combined clinical, molecular, genetic, and functional data reinforce the importance of TNNC1 rare variants in the pathogenesis of DCM.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Mutación Missense , Miofibrillas/metabolismo , Troponina C/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Femenino , Humanos , Masculino , Miofibrillas/genética , Estructura Secundaria de Proteína , Troponina C/química , Troponina C/genética
20.
J Biol Chem ; 286(23): 20901-12, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21502316

RESUMEN

A novel double deletion in cardiac troponin T (cTnT) of two highly conserved amino acids (Asn-100 and Glu-101) was found in a restrictive cardiomyopathic (RCM) pediatric patient. Clinical evaluation revealed the presence of left atrial enlargement and marked left ventricle diastolic dysfunction. The explanted heart examined by electron microscopy revealed myofibrillar disarray and mild fibrosis. Pedigree analysis established that this mutation arose de novo. The patient tested negative for six other sarcomeric genes. The single and double recombinant cTnT mutants were generated, and their functional consequences were analyzed in porcine skinned cardiac muscle. In the adult Tn environment (cTnT3 + cardiac troponin I), the single cTnT3-ΔN100 and cTnT3-ΔE101 mutations had opposing effects on the Ca(2+) sensitivity of force development compared with WT, whereas the double deletion cTnT3-ΔN100/ΔE101 increased the Ca(2+) sensitivity + 0.19 pCa units. In addition, cTnT3-ΔN100/ΔE101 decreased the cooperativity of force development, suggesting alterations in intrafilament protein-protein interactions. In the fetal Tn environment, (cTnT1 + slow skeletal troponin I), the single (cTnT1-ΔN110) and double (cTnT1-ΔN110/ΔE111) deletions did not change the Ca(2+) sensitivity compared with control. To recreate the patient's heterozygous genotype, we performed a reconstituted ATPase activity assay. Thin filaments containing 50:50 cTnT3-ΔN100/ΔE101:cTnT3-WT also increased the myofilament Ca(2+) sensitivity compared with WT. Co-sedimentation of thin filament proteins indicated that no significant changes occurred in the binding of Tn containing the RCM cTnT mutation to actin-Tm. This report reveals the protective role of Tn fetal isoforms as they rescue the increased Ca(2+) sensitivity produced by a cTnT-RCM mutation and may account for the lack of lethality during gestation.


Asunto(s)
Cardiomiopatía Restrictiva , Mutación INDEL , Contracción Miocárdica , Miocardio , Troponina T , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Adulto , Animales , Calcio/metabolismo , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/metabolismo , Cardiomiopatía Restrictiva/patología , Niño , Preescolar , Femenino , Genotipo , Humanos , Masculino , Miocardio/metabolismo , Miocardio/patología , Linaje , Proteínas Recombinantes , Porcinos , Troponina T/genética , Troponina T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA