Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38544207

RESUMEN

The remote monitoring of vital signs and healthcare provision has become an urgent necessity due to the impact of the COVID-19 pandemic on the world. Blood oxygen level, heart rate, and body temperature data are crucial for managing the disease and ensuring timely medical care. This study proposes a low-cost wearable device employing non-contact sensors to monitor, process, and visualize critical variables, focusing on body temperature measurement as a key health indicator. The wearable device developed offers a non-invasive and continuous method to gather wrist and forehead temperature data. However, since there is a discrepancy between wrist and actual forehead temperature, this study incorporates statistical methods and machine learning to estimate the core forehead temperature from the wrist. This research collects 2130 samples from 30 volunteers, and both the statistical least squares method and machine learning via linear regression are applied to analyze these data. It is observed that all models achieve a significant fit, but the third-degree polynomial model stands out in both approaches. It achieves an R2 value of 0.9769 in the statistical analysis and 0.9791 in machine learning.


Asunto(s)
Temperatura Corporal , Dispositivos Electrónicos Vestibles , Humanos , Muñeca/fisiología , Temperatura , Pandemias
2.
Exp Eye Res ; 219: 109036, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367249

RESUMEN

Given the implications of the problem of neovascularization on ocular health, as well as the growth in the number of cases, the purpose of the present study has been testing the efficacy of siRNAs (small interfering RNA) designed to silence Hypoxia Inducible Factor -1α (HIF-1α) and to demonstrate that their use stops neovascularization in a model of corneal burn. Corneal wounds in the limbic zone were made in the eyes of New Zealand white rabbits. Topical applications of siRNAs were done the next day to the wound for four consecutive days and eyes were examined with a slit lamp. Evaluation of neovascularization progress was done by analyzing images by ImageJTM and to determine the neovascular area in Matlab ® was used. At the same time, a rabbit corneal cell line was used for in vitro study of hypoxia exposure and Western blot analysis of the cell's extracts were done. Under normal cell culture oxygenation, the expression of HIF-1α was lower than that observed under hypoxic conditions. After 2 h of hypoxia, there was a significant increase in the HIF-1α expression, effect that was maintained up to 6 h. The increased in HIF-1α was mimicked by a cell permeable prolyl-4-hydroxylase inhibitor. Cobalt chloride showed no capacity to increase HIF-1α in vitro. The effect of three different siRNA on HIF-1α was tested after 4 h of hypoxia. siRNA#1 was able to silence 80% of HIF-1α expression, siRNA#2 and siRNA#3 reduce the expression in 45% and 40% respectively. In addition, the three siRNA were tested in a corneal model of neovascularization. scrambledsiRNA#2 was the most effective inhibitor of blood vessel production, followed by siRNA#3 and siRNA#1. Compared to the scrambled siRNA (100% of blood vessel generation), siRNA#2 blocked the presence of blood vessels by 83 ± 2%, siRNA#3 inhibited 45 ± 7% and siRNA#1 only inhibited 18 ± 5%. The necessary time to observe the 50% of effect showed values of NV50 of 10.2 ± 2.4 days for the scrambled siRNA, 9.1 ± 1.4 for siRNA#1, 6.5 ± 1.85 for siRNA#2 and 4.8 ± 1.8 days for siRNA#3. In conclusion, the topical application of siRNA towards HIF-1α seems to be an effective and reliable method to stop neovascularization.


Asunto(s)
Neovascularización de la Córnea , Administración Tópica , Animales , Hipoxia de la Célula , Neovascularización de la Córnea/genética , Neovascularización de la Córnea/terapia , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Patológica , ARN Interferente Pequeño/genética , Conejos , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Sensors (Basel) ; 22(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35808304

RESUMEN

The educational sector has made extraordinary efforts to neutralize the impact of the pandemic caused by COVID-19, forcing teachers, scholars, and academic personnel to change the way education is delivered by developing creative and technological solutions to improve the landscape for education. The Internet of Things (IoT) is crucial for the educational transition to digital and virtual environments. This paper presents the integration of IoT technology in the Two-Dimensional Cartesian Coordinate System Educational Toolkit (2D-CACSET), to transform it into MEIoT 2D-CACSET; which includes educational mechatronics and the IoT. The Educational Mechatronics Conceptual Framework (EMCF) is extended to consider the virtual environment, enabling knowledge construction in virtual concrete, virtual graphic, and virtual abstract levels. Hence, the students acquire this knowledge from a remote location to apply it further down their career path. Three instructional designs are designed for this work using the MEIoT 2D-CACSET to learn about coordinate axes, quadrants, and a point in the 2D Coordinate Cartesian System. This work is intended to provide an IoT educational technology to offer an adequate response to the educational system's current context.


Asunto(s)
COVID-19 , Internet de las Cosas , Humanos , Aprendizaje , Pandemias , Estudiantes
4.
Sensors (Basel) ; 21(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34577511

RESUMEN

Engineering education benefits from the application of modern technology, allowing students to learn essential Science, Technology, Engineering, and Mathematics (STEM) related concepts through hands-on experiences. Robotic kits have been used as an innovative tool in some educational fields, being readily accepted and adopted. However, most of the time, such kits' knowledge level requires understanding basic concepts that are not always appropriate for the student. A critical concept in engineering is the Cartesian Coordinate System (CCS), an essential tool for every engineering, from graphing functions to data analysis in robotics and control applications and beyond. This paper presents the design and implementation of a novel Two-Dimensional Cartesian Coordinate System Educational Toolkit (2D-CACSET) to teach the two-dimensional representations as the first step to construct spatial thinking. This innovative educational toolkit is based on real-time location systems using Ultra-Wide Band technology. It comprises a workbench, four Anchors pinpointing X+, X-, Y+, Y- axes, seven Tags representing points in the plane, one listener connected to a PC collecting the position of the Tags, and a Graphical User Interface displaying these positions. The Educational Mechatronics Conceptual Framework (EMCF) enables constructing knowledge in concrete, graphic, and abstract levels. Hence, the students acquire this knowledge to apply it further down their career path. For this paper, three instructional designs were designed using the 2D-CACSET and the EMCF to learn about coordinate axes, quadrants, and a point in the CCS.


Asunto(s)
Ingeniería , Aprendizaje , Creatividad , Humanos , Estudiantes , Tecnología
5.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769429

RESUMEN

(1) Background: Artemia salina is a brine shrimp containing high concentrations of dinucleotides, molecules with properties for dry eye treatment. For this reason, the purpose of the study was to evaluate the effect of the artificial tears based on an extract of Artemia salina in a rabbit dry eye model. (2) Methods: A prospective and randomized study was carried out. Twenty rabbits were divided into 4 groups (n = 5, each group): healthy rabbits, dry eye rabbits, dry eye rabbits treated with hypromellose (HPMC), and dry eye rabbits treated with Artemia salina. Dry eye was induced by the topical instillation of 0.2% benzalkonium chloride. The measurements were performed before and after the treatment for 5 consecutive days. (3) Results: The topical instillation of artificial tears containing Artemia salina showed beneficial effects on tear secretion, tear break-up time, corneal staining, the density of Goblet cells, heigh of mucin cloud secreted by these cells, and mRNA levels of IL-1ß and MMP9 in conjunctival cells. Compared with the HPMC, there was a statistically significant improvement (p < 0.05) with the Artemia salina in all the variables under study, except for the conjunctival hyperemia, density of Goblet cells, and mRNA levels of IL-6. (4) Conclusions: The potential of artificial tears based on Artemia salina as a secretagogue agent for dry eye treatment was confirmed, opening the door for future clinical trials and studies to extrapolate the findings for dry eye patients.


Asunto(s)
Artemia/química , Fosfatos de Dinucleósidos/farmacología , Síndromes de Ojo Seco/tratamiento farmacológico , Derivados de la Hipromelosa/farmacología , Gotas Lubricantes para Ojos/administración & dosificación , Extractos Vegetales/farmacología , Lágrimas/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/metabolismo , Masculino , Conejos , Lágrimas/metabolismo
6.
Mol Vis ; 26: 530-539, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32818016

RESUMEN

Purpose: The objective of this study was to evaluate the changes in the melatoninergic receptors of DBA/2J and C57BL/6J mice with the development of glaucoma. DBA/2J mice are widely used to study the physiopathology of glaucoma due to the similarities of their eyes to human eyes and the resulting similarity in the development of their pathology. In addition, melatoninergic receptors are known for their control of intraocular pressure (IOP), reducing the production of aqueous humor; however, little is known about their relationship with the development of this pathology. Methods: mRNA expression of MT1, MT2, and GPR50 melatoninergic receptors was performed with quantitative real-time PCR. In addition, receptor expression was performed with immunohistochemical techniques on the ciliary processes. To further investigate the effect of melatonin and its analog 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT) on IOP, animals were instilled with these compounds and the corresponding melatoninergic antagonists to assess their effect on IOP. Results: All melatoninergic receptor expression decayed with the development of the glaucomatous pathology in the DBA/2J mice, and was especially visible for the MT2 receptor. However, receptor expression was consistent in the C57BL/6J control mice across all ages investigated. Furthermore, IOP blockage was stronger with 4PPDOT (MT2 antagonist) only in the DBA/2J mice which suggests a correlation of this receptor with the development of the glaucomatous pathology in DBA/2J animals. Conclusions: Melatonin receptor expression decays with the development of the glaucomatous pathology. This implies that the physiologic hypotensive effect of endogenous melatonin reducing IOP is not possible. A solution for such changes in receptor expression is the exogenous application of melatonin or any of its analogs that permit the activation of the remaining melatonin receptors.


Asunto(s)
Glaucoma/genética , Melatonina/farmacología , Proteínas del Tejido Nervioso/genética , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Melatonina/genética , Animales , Humor Acuoso/efectos de los fármacos , Humor Acuoso/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Presión Intraocular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Proteínas del Tejido Nervioso/metabolismo , Prazosina/farmacología , Receptor de Melatonina MT1/antagonistas & inhibidores , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/antagonistas & inhibidores , Receptor de Melatonina MT2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Melatonina/antagonistas & inhibidores , Receptores de Melatonina/metabolismo , Especificidad de la Especie , Tetrahidronaftalenos/farmacología , Triptaminas/farmacología
7.
Int Ophthalmol ; 40(2): 419-422, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31650354

RESUMEN

PURPOSE: To evaluate the effect of a new nutritional supplement based on melatonin on the intraocular pressure (IOP) in normotensive subjects. PATIENTS AND METHODS: A short-term prospective study was designed. Sixty-seven normotensive subjects were recruited. Patients were divided into two groups. The daily group (DG) (n = 18) was instructed to take the supplement between 22:00 and 23:00 (before sleeping) for 3 consecutive days. IOP was measured from 10.00 to 11.00 am the day before treatment and during the 3 days of experiment. The acute group (AG) (n = 49) was instructed to take the supplement after the second measure (11.00) of the second day. IOP was measured 1 h and just before the intake of the supplement and 1 and 2 h after. All measurements in this group were taken 1 day before without any supplement (control) and the day of experiment. RESULTS: The DG group showed a significant decrease in IOP after supplement intake in all days of experiment, from 14.9 ± 3.4 mm Hg to 13.8 ± 2.9 mm Hg after 3 days of experiment (p value < 0.001). For AG, IOP did not change during the control day; however, a reduction of 1 mm Hg was found 2 and 3 h after supplement intake, from 15.7 ± 2.5 mm Hg to 14.7 ± 2.5 mm Hg and 15.1 ± 2.7 mm Hg, respectively, being statistically significant (p value < 0.001). CONCLUSION: The supplement based on melatonin was able to reduce the IOP in normotensive subjects after 2 h of intake. Moreover, the daily intake showed a reduction in IOP during the 3 days of experiment.


Asunto(s)
Presión Intraocular/efectos de los fármacos , Melatonina/farmacología , Apoyo Nutricional/métodos , Hipertensión Ocular/tratamiento farmacológico , Adulto , Antioxidantes/administración & dosificación , Femenino , Estudios de Seguimiento , Voluntarios Sanos , Humanos , Presión Intraocular/fisiología , Masculino , Persona de Mediana Edad , Hipertensión Ocular/fisiopatología , Estudios Prospectivos , Tonometría Ocular , Adulto Joven
8.
J Pharmacol Exp Ther ; 371(1): 186-190, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31371479

RESUMEN

Melatonin has been shown to enhance tear secretion associated with dinucleotide diadenosine tetraphosphate. This study investigated the isolated action of melatonin and its analogs, agomelatine, N-butanoyl-2-(2-methoxy-6H-isoindolo[2,1-a]indol-11-yl) ethanamine (IIK7), and 5-methoxycarbonylamino-N-cetyltryptamine (5-MCA-NAT) (10 µl at 100 µM), on tear secretion when applied topically in the rabbit cornea and its relationship with the melatonin MT1, MT2, and MT3/quinone reductase QR2 receptors. The results showed a significant increase in tear secretion, with a maximal effect at 60 minutes for the agonists (138.9% ± 6.5%, 128.9% ± 6.4%, and 120.0% ± 5.2%, respectively; P < 0.05; 100% control) but not for melatonin (101.6% ± 7.9%; P > 0.05). Agonist action was tested combined with the antagonists DH97 (MT2 selective), prazosin (MT3/QR2 inhibitor), and luzindole (nonselective MT membrane receptor) (10 µl at 100 µM). DH97 reversed the effect of agomelatine, IIK7, and 5-MCA-NAT up to 30.85% ± 7.6%,108% ± 7.2%, and 87.01% ± 7.6%, respectively (P < 0.05; 100% control). Luzindole antagonized agomelatine and 5-MCA-NAT up to 67.35% ± 7.6% and 92.12% ± 8%, respectively (P < 0.05). Prazosin only reversed 5-MCA-NAT action up to 84.2% ± 7.7% (P < 0.05). These results suggest different pathways for the agonists to act through MT membrane receptors. Therefore, agomelatine, IIK7, and 5-MCA-NAT act through MT membrane receptors as secretagogues of tear secretion, and these analogs could be considered excellent therapeutic candidates for dry eye treatment. SIGNIFICANCE STATEMENT: Currently, dry eye with aqueous deficit is treated by adding artificial tears palliatively. This study shows that topical installation of three melatonin analogs (agomelatine, IIK7, and 5-MCA-NAT), but not melatonin, in therapeutic doses in the rabbit cornea significantly increases tear production, acting through different melatonin membrane receptor subtypes. Therefore, this study suggests that melatoninergic compounds could be considered excellent therapeutic candidates for dry eye treatment and ocular surface diseases occurring with a reduction in tear production.


Asunto(s)
Aparato Lagrimal/efectos de los fármacos , Melatonina/farmacología , Lágrimas/fisiología , Acetamidas/farmacología , Animales , Córnea/efectos de los fármacos , Isoindoles/farmacología , Aparato Lagrimal/fisiología , Masculino , Melatonina/análogos & derivados , Prazosina/farmacología , Conejos , Triptaminas/farmacología
9.
FASEB J ; 32(6): 3020-3032, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401585

RESUMEN

The disturbances of cellular proteostasis caused by the alteration in the ubiquitin-proteasome system (UPS) have been proposed as a common mechanism underlying several neural pathologies that involve a neuroinflammatory process. As we have previously reported that the nucleotide receptor P2Y purinoceptor 2 (P2Y2R) regulates the proteasomal catalytic activities, we wonder whether this receptor is involved in the UPS disturbances associated with the neuroinflammation process. With the use of mice expressing a UPS reporter [mice expressing the UPS reporter ubiquitinG76V-green fluorescent protein (UbGFP mice)], we found that LPS-induced acute neuroinflammation status causes a UPS impairment in astrocytes and microglial cells by a mechanism dependent on P2Y2R. In this line, LPS-treated double transgenic UbGFP; P2Y2R-/- mice did not present a UPS impairment in astrocytes or a social interaction deficit as severe as that observed in LPS-treated UbGFP mice. In vivo administration of selective P2Y2R agonist diuridine tetraphosphate reversed the UPS impairment completely in astrocytes and partially in microglial cells, promoting increased expression of the proteasomal ß5 subunit by a mechanism dependent on the Src/PI3K/ERK pathway. Altogether, our results suggest that LPS induces unbalanced proteostasis in astrocytes by blocking P2Y2R. Finally, our findings point to the design of selective P2Y2R agonist drugs as a new therapeutic approach to treat the neuroinflammatory status.-De Diego García, L., Sebastián-Serrano, Á., Hernández, I. H., Pintor, J., Lucas, J. J., Díaz-Hernández, M. The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation.


Asunto(s)
Astrocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis , Receptores Purinérgicos P2Y2/metabolismo , Ubiquitina/metabolismo , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/genética , Receptores Purinérgicos P2Y2/genética , Conducta Social , Ubiquitina/genética
10.
Purinergic Signal ; 14(4): 499-504, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30238191

RESUMEN

The recent discovery of the photoreceptor melanopsin in lens epithelial cells has opened the possibility of modulating this protein by light stimulation. Experiments carried out on New Zealand white rabbits have demonstrated that the release of ATP from the lens to the aqueous humor can be reduced either when a yellow filter or a melanopsin antagonist is used. Compared to control (1.10 ± 0.15 µM ATP), the application of a yellow filter (λ465-480) reduced ATP in the aqueous humor 70%, while the melanopsin antagonist AA92593 reduced the presence of ATP 63% (n = 5), an effect which was also obtained with the PLC inhibitor U73122. These results indicate that when melanopsin is blocked either by the lack of light, a filter, or an antagonist, the extracellular presence of ATP is significantly reduced. This discovery may be relevant, on the one hand, because many ocular physiological processes are controlled by ATP and, on the other hand, because it is possible to stimulate ATP release with just light and without using any added substance.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células Epiteliales/metabolismo , Cristalino/metabolismo , Luz , Opsinas de Bastones/metabolismo , Animales , Humor Acuoso/metabolismo , Células Epiteliales/patología , Cristalino/efectos de los fármacos , Masculino , Conejos , Opsinas de Bastones/antagonistas & inhibidores
11.
Purinergic Signal ; 14(3): 259-270, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29948577

RESUMEN

The pathogenesis of glaucoma involves numerous intracellular mechanisms including the purinergic system contribution. Furthermore, the presence and release of nucleotides and dinucleotides during the glaucomatous damage and the maintenance of degradation machinery through ecto-nucleotidase activity are participating in the modulation of the suitable extracellular complex balance. The aim of this study was to investigate the levels of diadenosine tetraphosphate (Ap4A) and the pattern of ecto-nucleotidase activity expression in glaucomatous retinas during the progress the pathology. Ap4A levels were analyzed by HPLC in glaucomatous retinas from the DBA/2J mice at 3, 9, 15, and 23 months of age. For that, retinas were dissected as flattened whole-mounts and stimulated in Ringer buffer with or without 59 mM KCl. NPP1 expression was analyzed by RT-PCR and western blot and its distribution was assessed by immunohistochemistry studies examined under confocal microscopy. Glaucomatous mice exhibited Ap4A values, which changed in stimulated retinas as long as the pathology progressed varying from 0.73 ± 0.04 (3 months) to 0.170 ± 0.05 pmol/mg retina (23 months). Concomitantly, NPP1 expression was significantly increased (82.15%) in the DBA/2J mice at 15 months. Furthermore, immunohistochemical studies showed that NPP1 labeling was stronger in OPL and IPL labeling tangentially in the vitreal part of the retina and was upregulated at 15 months of age. Our findings demonstrate that Ap4A decreased levels may be related with exacerbated activity of NPP1 protein in glaucomatous degeneration and in this way contributing to elucidate different mechanisms involved in retinal impairment in glaucomatous degeneration.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Glaucoma/fisiopatología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Retina/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
12.
Purinergic Signal ; 14(3): 271-284, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30019187

RESUMEN

Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 µM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 µM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.


Asunto(s)
Glaucoma , Presión Intraocular/efectos de los fármacos , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2/efectos de los fármacos , Animales , Humanos , Conejos , Uridina Difosfato/química , Uridina Difosfato/farmacología
13.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 43-51, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27768902

RESUMEN

The Ubiquitin-Proteasome System (UPS) is essential for the regulation of the cellular proteostasis. Indeed, it has been postulated that an UPS dysregulation is the common mechanism that underlies several neurological disorders. Considering that extracellular nucleotides, through their selective P2Y2 receptor (P2Y2R), play a neuroprotective role in various neurological disorders that course with an UPS impairment, we wonder if this neuroprotective capacity resulted from their ability to modulate the UPS. Using a cellular model expressing two different UPS reporters, we found that the stimulation of P2Y2R by its selective agonist Up4U induced a significant reduction of UPS reporter levels. This reduction was due to an increase in two of the three peptidase proteasome activities, chymotrypsin and postglutamyl, caused by an increased expression of proteasome constitutive catalytic subunits ß1 and ß5. The intracellular signaling pathway involved required the activation of IP3/MEK1/2/ERK but was independent of PKC or PKA. Interestingly, the P2Y2R activation was able to revert both UPS-reporter accumulation and the cell death induced by a prolonged inhibition of UPS. Finally, we also observed that intracerebroventricular administration of Up4U induced a significant increase both of chymotrypsin and postglutamyl activities as well as an increased expression of proteasome subunits ß1 and ß5 in the hippocampus of wild-type mice, but not in P2Y2R KO mice. All these results strongly suggest that the capacity to modulate the UPS activity via P2Y2R is the molecular mechanism which is how the nucleotides play a neuroprotective role in neurological disorders.


Asunto(s)
Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nucleótidos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y2/metabolismo , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Neuronas/citología , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Nucleótidos/metabolismo , Agonistas del Receptor Purinérgico P2Y/metabolismo , Nucleótidos de Uracilo/metabolismo , Nucleótidos de Uracilo/farmacología
14.
Exp Eye Res ; 162: 1-8, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28655604

RESUMEN

Melatonin is a substance synthesized in the pineal gland as well as in other organs. This substance is involved in many ocular functions, giving its synthesis in numerous eye structures. Melatonin is synthesized from serotonin through two enzymes, the first limiting step into the synthesis of melatonin being aralkylamine N-acetyltransferase (AANAT). In this current study, AANAT phosphorylation after the activation of TRPV4 was studied using human non-pigmented epithelial ciliary body cells. Firstly, it was necessary to determine the adequate time and dose of the TRPV4 agonist GSK1016790A to reach the maximal phosphorylation of AANAT. An increase of 72% was observed after 5 min incubation with 10 nM GSK (**p < 0.05, n = 6) with a concomitant rise in N-acetyl serotonin and melatonin synthesis. The involvement of a TRPV4 channel in melatonin synthesis was verified by antagonist and siRNA studies as a previous step to studying intracellular signalling. Studies performed on the second messengers involved in GSK induced AANAT phosphorylation were carried out by inhibiting several pathways. In conclusion, the activation of calmodulin and calmodulin-dependent protein kinase II was confirmed, as shown by the cascade seen in AANAT phosphorylation (***p < 0.001, n = 4). This mechanism was also established by measuring N-acetyl serotonin and melatonin levels. In conclusion, the activation of a TRPV4 present in human ciliary body epithelial cells produced an increase in AANAT phosphorylation and a further melatonin increase by a mechanism in which Ca-calmodulin and the calmodulin-dependent protein kinase II are involved.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/metabolismo , Cuerpo Ciliar/metabolismo , Células Epiteliales/metabolismo , Melatonina/biosíntesis , Canales Catiónicos TRPV/metabolismo , Western Blotting , Línea Celular , Cromatografía Líquida de Alta Presión , Cuerpo Ciliar/citología , Células Epiteliales/citología , Humanos , Fosforilación
15.
Exp Eye Res ; 154: 168-176, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27914990

RESUMEN

Melanopsin is a non-image forming photoreceptor known to be present in the retina and it is considered to have light regulated tasks among other functions. In the present work, melanopsin presence in human lens epithelial cells as well as in human lens tissue is described for the first time. Moreover, studying the concentration of melatonin and its synthesising enzyme AANAT proved a clear link between melanopsin activation and the suppression of melatonin synthesis. Melanopsin sensitivity to specific wavelength (465-480 nm, blue) was confirmed after making temporal studies incubating lens epithelial cells under light, red, green, blue and total darkness for 2, 4, 8, 12 h and analysing the concentration of both melatonin and its synthesising enzyme AANAT, discovering that melatonin levels after submitting cells to total darkness are significantly higher to ones submitted to white or specifically blue light (***p < 0.001, n = 6). The involvement of melanopsin in the regulation of melatonin was also determined by using a specific inhibitor AA92593 and by inhibiting melanopsin-induced phospholipase C activation. Under this situation neither AANAT nor melatonin levels changed under light conditions (n = 4, ***p < 0.001). The discovery of melanopsin in the lens opens the possibility of regulating melatonin synthesis with the corresponding implication as an antioxidant substance.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/biosíntesis , Ritmo Circadiano , Cristalino/metabolismo , Melatonina/biosíntesis , Células Fotorreceptoras/metabolismo , Opsinas de Bastones/metabolismo , Animales , Western Blotting , Células Cultivadas , Cromatografía Líquida de Alta Presión , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Cristalino/citología , Luz , Ratones , Ratones Endogámicos C57BL , Fotoperiodo
16.
Purinergic Signal ; 13(2): 249-258, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28176024

RESUMEN

Tear hyperosmolarity is a key event in dry eye. In this work, we analyzed whether hyperosmolar challenge induces ATP release on the ocular surface. Moreover, as extracellular ATP can activate P2X7 receptor, the changes in P2X7 protein levels and its involvement in pathological process triggered by hypertonic treatment were also examined. High-performance liquid chromatography analysis revealed that ATP levels significantly increased in human corneal and conjunctival epithelial cells exposed to hyperosmotic challenge as well as in dry eye patients as compared to control subjects. A significant reduction in cell viability was detected after hyperosmolar treatment, indicating that the rise in ATP release was mainly due to cell lysis/death. Additionally, vesicular nucleotide transporter was identified in both cell lines and their protein expression was upregulated in hypertonic media. P2X7 receptor truncated form together with the full-length form was identified in both cell lines, and experiments using specific antagonist and agonist for P2X7 indicated that this receptor did not mediate cell death induced by hyperosmolar stress. In conclusion, hyperosmotic stress induces ATP release. Extracellular ATP can activate P2X7 receptor leading to cytotoxicity in many cells/tissues; however, this does not occur in human corneal and conjunctival epithelial cells. In these cells, the presence of P2X7 receptor truncated form together with the full-length form hinders a P2X7 apoptotic behavior on the ocular surface.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Conjuntiva/metabolismo , Córnea/metabolismo , Síndromes de Ojo Seco/fisiopatología , Receptores Purinérgicos P2X7/metabolismo , Línea Celular , Síndromes de Ojo Seco/metabolismo , Células Epiteliales/metabolismo , Humanos , Presión Osmótica/fisiología , Lágrimas/metabolismo
17.
Purinergic Signal ; 13(2): 171-177, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27848070

RESUMEN

Glaucoma is a neurodegenerative disease that produces blindness. The main factor associated with this disease is an abnormally elevated intraocular pressure (IOP). To date, some attempts have been made to demonstrate the role of nucleotides modulating IOP, but never in a model of glaucoma. The DBA/2J mouse is an animal that develops the pathology spontaneously, starting from the typical rise in IOP at 9 months of age. Using this animal model, together with a control mouse, C57BL/6J, it has been possible to monitor the elevation in IOP in the glaucomatous mice and to check the ability of the dinucleotide diadenosine tetraphosphate AKA Ap4A to reduce IOP. The topical application of Ap4A when IOP is maximal (9-12 months) reduced IOP 30.6 ± 6.6% in the DBA/2J and 17.9 ± 4.0% in the C57BL/6J mice. Concentration response curves in both animal strains produced similar pD2 values; these being 4.9 ± 0.5 and 5.1 ± 0.4 for the normotensive C57BL/6J and the glaucomatous DBA/2J respectively. Antagonist studies showed differences between the control and the glaucomatous animals. In particular, the main receptor reducing IOP in the control animal was the P2Y1 receptor and in the glaucomatous model the P2Y6, although the participation of other P2 receptors cannot be ruled out. The long-term effect of Ap4A applied three times a week for 3 months showed a clear stop in the elevation of IOP in the glaucomatous model, thus indicating the possibility of using Ap4A as an effective compound for the treatment of glaucoma.


Asunto(s)
Fosfatos de Dinucleósidos/farmacología , Glaucoma , Presión Intraocular/efectos de los fármacos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
18.
J Pineal Res ; 63(2)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28658514

RESUMEN

The eye is continuously exposed to solar UV radiation and pollutants, making it prone to oxidative attacks. In fact, oxidative damage is a major cause of age-related ocular diseases including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. As the nature of lens cells, trabecular meshwork cells, retinal ganglion cells, retinal pigment epithelial cells, and photoreceptors is postmitotic, autophagy plays a critical role in their cellular homeostasis. In age-related ocular diseases, this process is impaired, and thus, oxidative damage becomes irreversible. Other conditions such as low-grade chronic inflammation and angiogenesis also contribute to the development of retinal diseases (glaucoma, age-related macular degeneration and diabetic retinopathy). As melatonin is known to have remarkable qualities such as antioxidant/antinitridergic, mitochondrial protector, autophagy modulator, anti-inflammatory, and anti-angiogenic, it can represent a powerful tool to counteract all these diseases. The present review analyzes the role and therapeutic potential of melatonin in age-related ocular diseases, focusing on nitro-oxidative stress, autophagy, inflammation, and angiogenesis mechanisms.


Asunto(s)
Envejecimiento , Oftalmopatías , Melatonina/uso terapéutico , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/patología , Autofagia/efectos de los fármacos , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo , Oftalmopatías/patología , Oftalmopatías/fisiopatología , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Estrés Nitrosativo/efectos de los fármacos
19.
Immun Ageing ; 14: 11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28529533

RESUMEN

Ageing involves a progressive decline of the body's regulatory systems including immune system. Adenosine regulates immune function by interaction with its receptors, mainly adenosine A2A receptor, present on the surface of immune cells. Furthermore, cellular response to this nucleoside is highly dependent on its extracellular concentration that is regulated by ecto-enzymes such as CD39 and CD73. Therefore, the aim of this study was to investigate the effect of age on adenosine A2A receptor, CD39 and CD73 gene expression. Changes in mRNA were measured by quantitative PCR from peripheral blood of young, middle-aged and older adults as well as centenarians. Centenarians showed a prominent decrease of CD39 and CD73 mRNA in comparison with older adults. Regarding to adenosine A2A receptor, we detected two subgroups of centenarians with high and low level of transcript. Additionally, adenosine A2A receptor mRNA level of centenarians, did not correlate with their cognitive impairment. In summary, our pilot study suggests that unlike of adenosine A2A receptor, the level of CD39 as well as CD73 mRNA could be a hallmark of successful human ageing.

20.
Eye Contact Lens ; 43(6): 346-351, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27203795

RESUMEN

OBJECTIVE: To evaluate the ocular surface temperature using an infrared thermography camera before and after wearing scleral lens in patients with keratoconus and correlate these results with the tear production and stability. METHODS: A pilot, experimental, short-term study has been performed. Twenty-six patients with keratoconus (36.95±8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (KC-ICRS group) and patients without ICRS (KC group). Schirmer test, tear breakup time (TBUT), and ocular surface temperature in the conjunctiva, limbus, and cornea were evaluated before and after wearing a scleral lens. RESULTS: The patients wore the scleral lenses from 6 to 9 hours with average of 7.59±0.73 hours. No significant changes in Schirmer test and TBUT were found for both groups. No temperature differences were found between the KC-ICRS and the KC groups for all zones evaluated. There was a slight, but statistically significant, increase in the inferior cornea, temporal limbus, and nasal conjunctival temperature for KC-ICRS group and temporal limbus temperature decreasing for the KC group after wearing scleral lens (P<0.05). The conjunctiva and limbus temperature was statistically higher than the central cornea for both groups before and after scleral lenses wearing (P<0.05), but no difference in the peripheral cornea was found. No statistically significant differences in the central corneal temperature were found between the groups after scleral lens wearing (P>0.05). CONCLUSION: Scleral contact lens seems not to modify the ocular surface temperature despite the presence of the tear film stagnation under the lens.


Asunto(s)
Temperatura Corporal/fisiología , Conjuntiva/fisiología , Lentes de Contacto , Córnea/fisiología , Queratocono/terapia , Prótesis e Implantes , Esclerótica , Adulto , Femenino , Humanos , Queratocono/metabolismo , Limbo de la Córnea/fisiología , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Lágrimas/metabolismo , Termografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA