Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 543(7644): 229-233, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28225761

RESUMEN

Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power. At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level. When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths, with single-nanoparticle sensitivity, which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3H4 level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3H4 level, resulting in population inversion relative to the 3H6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3H4 → 3H6 transition, can trigger amplified stimulated emission to discharge the 3H4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the resolution that can be practically achieved by such techniques.

2.
Anal Chem ; 93(31): 10955-10965, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323465

RESUMEN

Water-in-oil-in-water (w/o/w) double emulsion (DE) encapsulation has been widely used as a promising platform technology for various applications in the fields of food, cosmetics, pharmacy, chemical engineering, materials science, and synthetic biology. Unfortunately, DEs formed by conventional emulsion generation approaches in most cases are highly polydisperse, making them less desirable for quantitative assays, controlled biomaterial synthesis, and entrapped ingredient release. Microfluidic devices can generate monodisperse DEs with controllable size, morphology, and production rate, but these generally require multistep fabrication processes and use of different solvents or bulky external instrumentation to pattern channel wettability. To overcome these limitations, we propose a rapid, simple, and inexpensive method to spatially pattern wettability in microfluidic devices for the continuous generation of monodisperse DEs. This is achieved by applying corona-plasma treatment to a select zone of the microchannel surface aided by a custom-designed corona resistance microchannel to strictly confine the plasma-treatment zone in a single polydimethylsiloxane (PDMS) microfluidic device. The properties of PDMS channel surfaces and key microchannel regions for DE generation are characterized under different levels of treatment. The size, shell thickness, and number of inner cores of generated DEs are shown to be highly controllable by tuning the phase flow rate ratios. Using DEs as templates, we successfully achieve a one-step generation and collection of gelatin microgels. Additionally, we demonstrate the biological capability of generated DEs by flow cytometric screening of the encapsulation and growth of yeast cells within DEs. We expect that the proposed approach will be widely used to create microfluidic devices with more complex wettability patterns.


Asunto(s)
Dispositivos Laboratorio en un Chip , Agua , Emulsiones , Citometría de Flujo , Humectabilidad
3.
Biotechnol Bioeng ; 118(2): 647-658, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33022743

RESUMEN

Yeast has been engineered for cost-effective organic acid production through metabolic engineering and synthetic biology techniques. However, cell growth assays in these processes were performed in bulk at the population level, thus obscuring the dynamics of rare single cells exhibiting beneficial traits. Here, we introduce the use of monodisperse picolitre droplets as bioreactors to cultivate yeast at the single-cell level. We investigated the effect of acid stress on growth and the effect of potassium ions on propionic acid tolerance for single yeast cells of different species, genotypes, and phenotypes. The results showed that the average growth of single yeast cells in microdroplets experiences the same trend to those of yeast populations grown in bulk, and microdroplet compartments do not significantly affect cell viability. This approach offers the prospect of detecting cell-to-cell variations in growth and physiology and is expected to be applied for the engineering of yeast to produce value-added bioproducts.


Asunto(s)
Saccharomyces cerevisiae/crecimiento & desarrollo , Ingeniería Metabólica
4.
Nano Lett ; 20(12): 8487-8492, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-32936645

RESUMEN

Lanthanide-based upconversion nanoparticles (UCNPs) generally require high power laser excitation. Here, we report wide-field upconversion microscopy at single-nanoparticle sensitivity using incoherent excitation of a 970 nm light-emitting diode (LED). We show that due to its broad emission spectrum, LED excitation is about 3 times less effective for UCNPs and generates high background compared to laser illumination. To counter this, we use time-gated luminescence detection to eliminate the residual background from the LED source, so that individual UCNPs with high sensitizer (Yb3+) doping and inert shell protection become clearly identified under LED excitation at 1.18 W cm-2, as confirmed by correlated electron microscopy images. Hydrophilic UCNPs are obtained by polysaccharide coating via a facile ligand exchange protocol to demonstrate imaging of cellular uptake using LED excitation. These results suggest a viable approach to bypassing the limitations associated with high-power lasers when applying UCNPs and upconversion microscopy to life science research.

5.
Opt Express ; 28(16): 24308-24326, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752412

RESUMEN

Upconversion nanoparticles (UCNPs) are becoming increasingly popular as biological markers as they offer photo-stable imaging in the near-infrared (NIR) biological transparency window. Imaging at NIR wavelengths benefits from low auto-fluorescence background and minimal photo-damage. However, as the diffraction limit increases with the wavelength, the imaging resolution deteriorates. To address this limitation, recently two independent approaches have been proposed for imaging UCNPs with sub-diffraction resolution, namely stimulated emission-depletion (STED) microscopy and super linear excitation-emission (uSEE) microscopy. Both methods are very sensitive to the UCNP composition and the imaging conditions, i.e. to the excitation and depletion power. Here, we demonstrate that the imaging conditions can be chosen in a way that activates both super-resolution regimes simultaneously when imaging NaYF4:Yb,Tm UCNPs. The combined uSEE-STED mode benefits from the advantages of both techniques, allowing for imaging with lateral resolution about six times better than the diffraction limit due to STED and simultaneous improvement of the axial resolution about twice over the diffraction limit due to uSEE. Conveniently, at certain imaging conditions, the uSEE-STED modality can achieve better resolution at four times lower laser power compared to STED mode, making the method appealing for biological applications. We illustrate this by imaging UCNPs functionalized by colominic acid in fixed neuronal phenotype cells.

6.
Molecules ; 24(11)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159269

RESUMEN

We describe simple direct conjugation of a single TEGylated Europium chelate to DNA that binds to intracellular rRNA and is then detected using a homogeneous luminescent in situ hybridisation (LISH) technique. As a proof-of-principle, Staphylococcus aureus (S. aureus) was selected as a model for our study to show the ability of this probe to bind to intracellular 16S ribosomal rRNA. A highly purified Europium chelate conjugated oligonucleotide probe complementary to an rRNA sequence-specific S. aureus was prepared and found to be soluble and stable in aqueous solution. The probe was able to bind specifically to S. aureus via in situ hybridisation to differentiate S. aureus from a closely related but less pathogenic Staphylococcus species (S. epidermidis). A time-gated luminescent (TGL) microscope system was used to generate the high signal-to-noise ratio (SNR) images of the S. aureus. After excitation (365 nm, Chelate λmax = 335 nm), the long-lived (Eu3+) luminescent emission from the probe was detected without interference from natural background autofluorescence typically seen in biological samples. The luminescent images were found to have 6 times higher SNR or sensitivity compared to the fluorescent images using conventional fluorophore Alexa Fluor 488. The TEGylated Europium chelate -oligo probe stained S. aureus with mean signal intensity 3.5 times higher than the threshold level of signal from S. epidermidis (with SNR 8 times higher). A positive control probe (EUB338-BHHTEGST-Eu3+) has mean signal intensity for S. aureus and S. epidermidis equally 3.2 times higher than the threshold of signal for a negative NON-EUB338 control probe. The direct conjugation of a single Europium chelate to DNA provides simplicity and improvement over existing bovine serum albumin (BSA)/streptavidin/biotinylated DNA platforms for multi-attachment of Europium chelate per DNA and more importantly makes it feasible for hybridisation to intracellular RNA targets. This probe has great potential for highly sensitive homogeneous in situ hybridisation detection of the vast range of intracellular DNA targets.


Asunto(s)
Hibridación in Situ , Luminiscencia , Mediciones Luminiscentes , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Cromatografía Líquida de Alta Presión , Humanos , Hibridación in Situ/métodos , Mediciones Luminiscentes/métodos , ARN Ribosómico 16S
7.
Anal Chem ; 88(2): 1312-9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26669618

RESUMEN

Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 µm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 µm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles.

8.
Anal Chem ; 88(19): 9564-9571, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27595303

RESUMEN

We describe the application of a synthetically developed tetradentate ß-diketonate-europium chelate with high quantum yield (39%), for sensitive immunodetection of prostate cancer cells (DU145). MIL38 antibody, a mouse monoclonal antibody against Glypican 1, conjugated directly to the chelate via lysine residues, resulted in soluble (hydrophilic) and stable immunoconjugates. Indirect labeling of the antibody by a europium chelated secondary polyclonal antibody and a streptavidin/biotin pair was also performed. All of these bright luminescent conjugates were used to stain DU145 cells, a prostate cancer cell line, using time gated luminescence microscopy for imaging, and their performances were compared to conventional FITC labeling. For all prepared conjugates, the europium chelate in conjunction with a gated autosynchronous luminescence detector (GALD) completely suppressed the cellular autofluorescence background to allow capture of vivid, high contrast images of immune-stained cancer cells.


Asunto(s)
Complejos de Coordinación/farmacología , Europio/química , Inmunoconjugados/farmacología , Técnicas Inmunológicas/métodos , Sustancias Luminiscentes/farmacología , Neoplasias de la Próstata/diagnóstico , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Glipicanos/inmunología , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Ligandos , Luminiscencia , Sustancias Luminiscentes/síntesis química , Masculino
9.
Opt Lett ; 39(13): 4037-40, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24978801

RESUMEN

We report a pulsed mid-infrared diamond Raman laser with output tuned from 3.38 to 3.80 µm through varying the optical parametric oscillator (OPO) pump wavelength. To our knowledge this is the longest reported wavelength from a solid-state Raman laser. We generated up to 80 µJ with good beam quality and 22% quantum conversion efficiency. Whilst the conversion process itself is efficient, approximately 40% of the generated Stokes light is lost to multiphonon absorption. By introducing a secondary pump beam at the anti-Stokes wavelength to initiate a seed at the Stokes wavelength through Raman resonant four-wave mixing, the laser threshold was reduced by approximately half, and the maximum output increased by 44% to 115 µJ.

10.
Anal Chem ; 84(22): 9674-8, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23098251

RESUMEN

We report a highly sensitive method for rapid identification and quantification of rare-event cells carrying low-abundance surface biomarkers. The method applies lanthanide bioprobes and time-gated detection to effectively eliminate both nontarget organisms and background noise and utilizes the europium containing nanoparticles to further amplify the signal strength by a factor of ∼20. Of interest is that these nanoparticles did not correspondingly enhance the intensity of nonspecific binding. Thus, the dramatically improved signal-to-background ratio enables the low-expression surface antigens on single cells to be quantified. Furthermore, we applied an orthogonal scanning automated microscopy (OSAM) technique to rapidly process a large population of target-only cells on microscopy slides, leading to quantitative statistical data with high certainty. Thus, the techniques together resolved nearly all false-negative events from the interfering crowd including many false-positive events.


Asunto(s)
Antígenos CD34/metabolismo , Regulación de la Expresión Génica , Microscopía/métodos , Automatización , Células HEK293 , Humanos , Factores de Tiempo
11.
Bioconjug Chem ; 23(4): 725-33, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22435834

RESUMEN

Ruthenium(II) complexes have rich photophysical attributes, which enable novel design of responsive luminescence probes to selectively quantify biochemical analytes. In this work, we developed a systematic series of Ru(II)-bipyrindine complex derivatives, [Ru(bpy)(3-n)(DNP-bpy)(n)](PF(6))(2) (n = 1, 2, 3; bpy, 2,2'-bipyridine; DNP-bpy, 4-(4-(2,4-dinitrophenoxy)phenyl)-2,2'-bipyridine), as luminescent probes for highly selective and sensitive detection of thiophenol in aqueous solutions. The specific reaction between the probes and thiophenol triggers the cleavage of the electron acceptor group, 2,4-dinitrophenyl, eliminating the photoinduced electron transfer (PET) process, so that the luminescence of on-state complexes, [Ru(bpy)(3-n)(HP-bpy)(n)](2+) (n = 1, 2, 3; HP-bpy, 4-(4-hydroxyphenyl)-2,2'-bipyridine), is turned on. We found that the complex [Ru(bpy)(DNP-bpy)(2)](2+) remarkably enhanced the on-to-off contrast ratio compared to the other two (37.8 compared to 21 and 18.7). This reveals a new strategy to obtain the best Ru(II) complex luminescence probe via the most asymmetric structure. Moreover, we demonstrated the practical utility of the complex as a cell-membrane permeable probe for quantitative luminescence imaging of the dynamic intracellular process of thiophenol in living cells. The results suggest that the new probe could be a very useful tool for luminescence imaging analysis of the toxic thiophenol in intact cells.


Asunto(s)
Diseño de Fármacos , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Imagen Molecular/métodos , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Rutenio/química , Supervivencia Celular , Color , Transporte de Electrón , Células HeLa , Humanos , Sustancias Luminiscentes/metabolismo , Compuestos Organometálicos/metabolismo , Fenoles/metabolismo , Compuestos de Sulfhidrilo/metabolismo
12.
Opt Express ; 20(17): 19305-12, 2012 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23038572

RESUMEN

We demonstrate the operation of a compact and efficient continuous wave (CW) self-Raman laser utilizing a Nd:YVO4 gain crystal and BaWO4 Raman crystal, generating yellow emission at 590 nm. We investigate the competition that occurs between Stokes lines in the Nd:YVO4 and BaWO4 crystals, and within the BaWO4 crystal itself. Through careful consideration of crystal length and orientation, we are able to suppress competition between Stokes lines, and generate pure yellow emission at 590 nm with output power of 194 mW for just 3.8 W pump power.


Asunto(s)
Láseres de Estado Sólido , Espectrometría Raman/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización
13.
Anal Chim Acta ; 1209: 339863, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35569873

RESUMEN

Surface modification and functionalization is typically required to engineer upconversion nanoparticles (UCNPs) for biosensing and bioimaging applications. Nevertheless, despite various antibody conjugation methods having been applied to UCNPs, no consensus has been reached on the best choice, as the results from individual studies are largely unable to be compared due to inadequate assessment of the properties of the conjugated products. Here, we introduce a systematic approach to quantitatively evaluate the biological activity of antibody-conjugated UCNPs. We determine that the optimal antibody conjugation efficiency to our colominic acid polysaccharide-coated UCNPs via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS) coupling is approximately 70%, corresponding to 16 antibodies per nanoparticle of 63 nm hydrodynamic diameter, with on average 12 of the 16 antibodies maintaining their affinity to the target antigens. The binding ability of the antibody-conjugated UCNPs to the antigen was well preserved, as verified by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and cellular imaging. This is the first study to quantitate the active antibody binding capacity of polysaccharide coated UCNP nanoparticles, offering a practical guideline for benchmarking functionalised UCNPs in future studies.


Asunto(s)
Nanopartículas , Anticuerpos , Nanopartículas/química , Polisacáridos
14.
Sci Rep ; 12(1): 18452, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323734

RESUMEN

Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Biomarcadores de Tumor/orina , Próstata , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/orina , Pelvis
15.
Anal Chem ; 83(6): 2294-300, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21344865

RESUMEN

Application of standard immuno-fluorescence microscopy techniques for detection of rare-event microorganisms in dirty samples is severely limited by autofluorescence of nontarget organisms or other debris. Time-gated detection using gateable array detectors in combination with microsecond-lifetime luminescent bioprobes (usually lanthanide-based) is highly effective in suppression of (nanosecond-lifetime) autofluorescence background; however, the complexity and cost of the instrumentation is a major barrier to application of these techniques to routine diagnostics. We report a practical, low-cost implementation of time-gated luminescence detection in a standard epifluorescence microscope which has been modified to include a high-power pulsed UV light-emitting diode (LED) illumination source and a standard fast chopper inserted in the focal plane behind a microscope eyepiece. Synchronization of the pulsed illumination/gated detection cycle is driven from the clock signal from the chopper. To achieve time-gated luminescence intensities sufficient for direct visual observation, we use high cycle rates, up to 2.5 kHz, taking advantage of the fast switching capabilities of the LED source. We have demonstrated real-time direct-visual inspection of europium-labeled Giardia lamblia cysts in dirty samples and Cryptosporidium parvum oocysts in fruit juice concentrate. The signal-to-background ratio has been enhanced by a factor of 18 in time-gated mode. The availability of low-cost, robust time-gated microscopes will aid development of long-lifetime luminescence bioprobes and accelerate their application in routine laboratory diagnostics.


Asunto(s)
Cryptosporidium parvum/aislamiento & purificación , Cryptosporidium parvum/metabolismo , Giardia lamblia/aislamiento & purificación , Giardia lamblia/metabolismo , Elementos de la Serie de los Lantanoides/metabolismo , Mediciones Luminiscentes , Microscopía/métodos , Bebidas/microbiología , Frutas/microbiología , Microscopía/instrumentación , Microbiología del Suelo , Coloración y Etiquetado , Factores de Tiempo
16.
Cytometry A ; 79(5): 349-55, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21462305

RESUMEN

Many microorganisms have a very low threshold (<10 cells) to trigger infectious diseases, and, in these cases, it is important to determine the absolute cell count in a low-cost and speedy fashion. Fluorescent microscopy is a routine method; however, one fundamental problem has been associated with the existence in the sample of large numbers of nontarget particles, which are naturally autofluorescent, thereby obscuring the visibility of target organisms. This severely affects both direct visual inspection and the automated microscopy based on computer pattern recognition. We report a novel strategy of time-gated luminescent scanning for accurate counting of rare-event cells, which exploits the large difference in luminescence lifetimes between the lanthanide biolabels, >100 µs, and the autofluorescence backgrounds, <0.1 µs, to render background autofluorescence invisible to the detector. Rather than having to resort to sophisticated imaging analysis, the background-free feature allows a single-element photomultiplier to locate rare-event cells, so that requirements for data storage and analysis are minimized to the level of image confirmation only at the final step. We have evaluated this concept in a prototype instrument using a 2D scanning stage and applied it to rare-event Giardia detection labeled by a europium complex. For a slide area of 225 mm(2) , the time-gated scanning method easily reduced the original 40,000 adjacent elements (0.075 mm × 0.075 mm) down to a few "elements of interest" containing the Giardia cysts. We achieved an averaged signal-to-background ratio of 41.2 (minimum ratio of 12.1). Such high contrasts ensured the accurate mapping of all the potential Giardia cysts free of false positives or negatives. This was confirmed by the automatic retrieving and time-gated luminescence bioimaging of these Giardia cysts. Such automated microscopy based on time-gated scanning can provide novel solutions for quantitative diagnostics in advanced biological, environmental, and medical sciences.


Asunto(s)
Diagnóstico por Imagen/métodos , Giardia lamblia/citología , Luminiscencia , Microscopía Electrónica de Rastreo , Automatización , Elementos de la Serie de los Lantanoides , Sensibilidad y Especificidad , Coloración y Etiquetado
17.
Opt Express ; 19(23): 23554-60, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109234

RESUMEN

We report an efficient 1.485 µm external cavity diamond Raman laser operating on the 2nd Stokes shift of a 1.064 µm Nd:YAG pump laser. 1.63 W pulsed at 5 kHz is produced with a quantum conversion efficiency of 71% and excellent beam quality. Numerical modelling confirms that optimal operation is achieved with low output coupling reflectivity.


Asunto(s)
Diamante/química , Ojo/efectos de la radiación , Láseres de Estado Sólido , Espectrometría Raman/métodos , Teoría Cuántica
18.
Opt Express ; 19(25): 25623-31, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22273955

RESUMEN

We report a miniature, wavelength-selectable crystalline Raman laser operating either in the yellow (588 nm) or lime (559 nm) selected simply by changing the temperature of an intracavity LBO crystal. Continuous-wave (CW) output powers are 320 mW and 660 mW respectively, corresponding to record diode-visible optical conversion efficiencies of 8.4% and 17% for such miniature devices. The complex laser behavior arising from interplay between nonlinear processes is studied experimentally and theoretically. We show that the interplay can lead to complete suppression of the first-Stokes field and that the phase matching conditions for maximum visible powers differ markedly for different length LBO crystals. By using threshold measurements, we calculate the round-trip resonator losses and show that crystal bulk losses dominate over other losses. As a consequence, Raman lasers utilizing shorter LBO crystals for intracavity frequency mixing can produce higher visible output power. These are new considerations for the optimum design of CW intracavity Raman lasers with visible output.


Asunto(s)
Diseño Asistido por Computadora , Rayos Láser , Dispositivos Ópticos , Espectrometría Raman/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización
19.
Opt Lett ; 36(8): 1428-30, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21499379

RESUMEN

We report cw yellow emission from a miniature self-Raman laser using highly doped Nd:YVO4 crystals combined with intracavity frequency doubling. Pump-limited 587.8 nm output of 220 mW was obtained from an 18 mm long resonator, pumped by a 3.8 W diode laser.

20.
Opt Lett ; 36(4): 579-81, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21326462

RESUMEN

We demonstrate a cw, laser diode-pumped Nd:GdVO4/SrMoO4 crystalline Raman laser. First Stokes laser output at 1173.5 nm of 2.18 W was achieved with a diode-to-first Stokes efficiency of 8.7%. With intracavity frequency doubling in LiB3O5, 3.1 W of cw yellow emission at 586.8 nm was obtained with a 12.4% diode-to-yellow efficiency. The experimental results show that SrMoO4 is an excellent stimulated Raman scattering gain material for high-power cw near-IR Stokes and yellow lasers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA