Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Mater ; 22(11): 1311-1316, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592028

RESUMEN

Quantum light emitters capable of generating single photons with circular polarization and non-classical statistics could enable non-reciprocal single-photon devices and deterministic spin-photon interfaces for quantum networks. To date, the emission of such chiral quantum light relies on the application of intense external magnetic fields, electrical/optical injection of spin-polarized carriers/excitons or coupling with complex photonic metastructures. Here we report the creation of free-space chiral quantum light emitters via the nanoindentation of monolayer WSe2/NiPS3 heterostructures at zero external magnetic field. These quantum light emitters emit with a high degree of circular polarization (0.89) and single-photon purity (95%), independent of pump laser polarization. Scanning diamond nitrogen-vacancy microscopy and temperature-dependent magneto-photoluminescence studies reveal that the chiral quantum light emission arises from magnetic proximity interactions between localized excitons in the WSe2 monolayer and the out-of-plane magnetization of defects in the antiferromagnetic order of NiPS3, both of which are co-localized by strain fields associated with the nanoscale indentations.

2.
Opt Lett ; 49(7): 1680-1683, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560835

RESUMEN

With the help of a theoretical model and finite-difference time-domain (FDTD) simulations based on the hydrodynamic-Maxwell model, we examine the effect of difference-frequency generation (DFG) in an array of L-shaped metal nanoparticles (MNPs) characterized by intrinsic plasmonic nonlinearity. The outcomes of the calculations reveal the spectral interplay between gain and loss in the vicinity of the fundamental frequency of the localized surface plasmon resonances. Subsequently, we identify different array thicknesses and pumping regimes facilitating parametric amplification and spontaneous parametric downconversion. Our results suggest that the parametric amplification regime becomes feasible on a scale of hundreds of nanometers and spontaneous parametric downconversion on the scale of tens of nanometers, opening up new exciting opportunities for developing building blocks of photonic metasurfaces.

3.
Annu Rev Phys Chem ; 74: 467-492, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36854178

RESUMEN

We review our recent quantum stochastic model for spectroscopic lineshapes in the presence of a coevolving and nonstationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein-Uhlenbeck process. Here, we present an overview of the theoretical techniques we have developed as applied to predicting coherent nonlinear spectroscopic signals. We show how direct (Coulomb) and exchange coupling to the bath give rise to distinct spectral signatures and discuss mathematical limits on inverting spectral signatures to extract the background density of states.

4.
J Chem Phys ; 161(10)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39254161

RESUMEN

We conduct systematic studies of the optical characteristics of plasmonic nanoparticles that exhibit C2v symmetry. In particular, we analyze three distinct geometric configurations: an L-type shape, a crescent, and a split-ring resonator shaped like the Greek letter π. Optical properties are examined using the finite-difference time-domain method. It is demonstrated that all three shapes exhibit two prominent plasmon modes associated with the two axes of symmetry. This is in addition to a wide range of resonances observed at high frequencies corresponding to quadrupole modes and peaks due to sharp corners. Next, to facilitate nonlinear analysis, we employ a semiclassical hydrodynamic model, where the electron pressure term is explicitly accounted for. This model goes beyond the standard Drude description and enables capturing nonlocal and nonlinear effects. Employing this model enables us to rigorously examine the second-order angular resolved nonlinear optical response of these nanoparticles in each of the three configurations. Two pumping regimes are considered, namely, continuous wave (CW) and pulsed excitations. For CW pumping, we explore the properties of the second harmonic generation (SHG). Polarization and angle-resolved SHG spectra are obtained, revealing strong dependence on the nanoparticle geometry and incident wave polarization. The C2v symmetry is shown to play a key role in determining the polarization states and selection rules of the SHG signal. For pulsed excitations, we discuss the phenomenon of broadband terahertz (THz) generation induced by the difference-frequency generation . It is shown that the THz emission spectra exhibit unique features attributed to the plasmonic resonances and symmetry of the nanoparticles. The polarization of the generated THz waves is also examined, revealing interesting patterns tied to the nanoparticle geometry. To gain deeper insight, we propose an analytical theory that agrees very well with the numerical experiments. The theory shows that the physical origin of the THz radiation is the mixing of various frequency components of the fundamental pulse by the second-order nonlinear susceptibility. An expression for the far-field THz intensity is derived in terms of the incident pulse parameters and the nonlinear response tensor of the nanoparticle. The results presented in this work offer new insights into the linear and nonlinear optical properties of nanoparticles with C2v symmetry. The demonstrated strong SHG response and efficient broadband THz generation hold great promise for applications in nonlinear spectroscopy, nanophotonics, and optoelectronics. The proposed theoretical framework also provides a valuable tool for understanding and predicting the nonlinear behavior of other related nanostructures.

5.
Nano Lett ; 23(23): 11006-11012, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038967

RESUMEN

Interlayer excitons (IXs) formed at the interface of van der Waals materials possess various novel properties. In parallel development, strain engineering has emerged as an effective means for creating 2D quantum emitters. Exploring the intersection of these two exciting areas, we use MoS2/WSe2 heterostructure as a model system and demonstrate how strain, defects, and layering can be utilized to create defect-bound IXs capable of bright, robust, and tunable quantum light emission in the technologically important near-infrared spectral range. Our work presents defect-bound IXs as a promising platform for pushing the performance of 2D quantum emitters beyond their current limitations.

6.
Nanotechnology ; 34(17)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36693276

RESUMEN

We study the effect of degenerate parametric down-conversion (DPDC) in an ensemble of two-level quantum emitters (QEs) coupled via near-field interactions to a single surface plasmon (SP) mode of a nonlinear plasmonic cavity. For this purpose, we develop a quantum driven-dissipative model capturing non-equilibrium dynamics of the system in which incoherently pumped QEs have transition frequency tuned near the second-harmonic response of the SPs. Considering the strong coupling regime, i.e. the SP-QE interaction rate exceeds system dissipation rates, we find a critical SP-QE coupling attributed to the phase transition between normal and lasing steady states. Examining fluctuations above the system's steady states, we predict new elementary excitations, namely, the exciton-plasmon polaritons formed by the two-SP quanta and single-exciton states of QEs. The contribution of two-SP quanta results in the linear scaling of the SP-QE interaction rate with the number of QEs,o, as opposed to theo-scaling known for the Dicke and Tavis-Cummings models. We further examine how SP-QE interaction scaling affects the polariton dispersions and power spectra in the vicinity of the critical coupling. For this purpose, we compare the calculation results assuming a finite ensemble of QEs and the model thermodynamic limit. The calculated power spectra predict an interplay of coherent photon emission by QEs near the second-harmonic frequency and correlated photon-pair emission at the fundamental frequency by the SPs (i.e. the photonic DPDC effect).

7.
J Chem Phys ; 157(5): 054103, 2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35933213

RESUMEN

Spectral line shapes provide a window into the local environment coupled to a quantum transition in the condensed phase. In this paper, we build upon a stochastic model to account for non-stationary background processes produced by broad-band pulsed laser stimulation, as distinguished from those for stationary phonon bath. In particular, we consider the contribution of pair-fluctuations arising from the full bosonic many-body Hamiltonian within a mean-field approximation, treating the coupling to the system as a stochastic noise term. Using the Itô transformation, we consider two limiting cases for our model, which lead to a connection between the observed spectral fluctuations and the spectral density of the environment. In the first case, we consider a Brownian environment and show that this produces spectral dynamics that relax to form dressed excitonic states and recover an Anderson-Kubo-like form for the spectral correlations. In the second case, we assume that the spectrum is Anderson-Kubo like and invert to determine the corresponding background. Using the Jensen inequality, we obtain an upper limit for the spectral density for the background. The results presented here provide the technical tools for applying the stochastic model to a broad range of problems.

8.
Nano Lett ; 21(7): 3271-3279, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33755481

RESUMEN

This report of the reddest emitting indium phosphide quantum dots (InP QDs) to date demonstrates tunable, near-infrared (NIR) photoluminescence (PL) as well as PL multiplexing in the first optical tissue window while avoiding toxic constituents. This synthesis overcomes the InP "growth bottleneck" and extends the emission peak of InP QDs deeper into the first optical tissue window using an inverted QD heterostructure, specifically ZnSe/InP/ZnS core/shell/shell nanoparticles. The QDs exhibit InP shell thickness-dependent tunable emission with peaks ranging from 515-845 nm. The high absorptivity of InP yields effective photoexcitation of the QDs with UV, visible, and NIR wavelengths. These nanoparticles extend the range of tunable direct-bandgap emission from InP-based nanostructures, effectively overcoming a synthetic barrier that has prevented InP-based QDs from reaching their full potential as NIR imaging agents. Multiplexed lymph node imaging in a mouse model demonstrates the potential of the NIR-emitting InP particles for in vivo imaging.


Asunto(s)
Fosfinas , Puntos Cuánticos , Animales , Indio , Ratones , Compuestos de Zinc
9.
J Chem Phys ; 154(8): 084703, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639729

RESUMEN

We report on a theoretical study of second-harmonic generation (SHG) in plasmonic nanostructures interacting with two-level quantum emitters (QEs) under incoherent energy pump. We generalize the driven-dissipative Tavis-Cummings model by introducing the anharmonic surface plasmon-polariton (SPP) mode coupled to QEs and examine physical properties of corresponding SPP-QE polariton states. Our calculations of the SHG efficiency for strong QE-SPP coupling demonstrate orders of magnitude enhancement facilitated by the polariton gain. We further discuss time-domain numerical simulations of SHG in a square lattice comprising Ag nanopillars coupled to QEs utilizing a fully vectorial nonperturbative nonlinear hydrodynamic model for conduction electrons coupled to Maxwell-Bloch equations for QEs. The simulations support the idea of gain enhanced SHG and show orders of magnitude increase in the SHG efficiency as the QEs are tuned in resonance with the lattice plasmon mode and brought above the population inversion threshold by incoherent pumping. By varying pump frequency and tuning QEs to a localized plasmon mode, we demonstrate further enhancement of the SHG efficiency facilitated by strong local electric fields. The incident light polarization dependence of the SHG is examined and related to the symmetries of participating plasmon modes.

10.
J Chem Phys ; 152(7): 071101, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087627

RESUMEN

Quantum entangled photons provide a sensitive probe of many-body interactions and offer a unique experimental portal for quantifying many-body correlations in a material system. In this paper, we present a theoretical demonstration of how photon-photon entanglement can be generated via interactions between coupled qubits. Here, we develop a model for the scattering of an entangled pair of photons from a molecular dimer. We develop a diagrammatic theory for the scattering matrix and show that one can correlate the von Neumann entropy of the outgoing bi-photon wave function with exciton exchange and repulsion interactions. We conclude by discussing possible experimental scenarios for realizing these ideas.

11.
Phys Rev Lett ; 123(12): 123605, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31633973

RESUMEN

We study photon emission by an ensemble of two-level systems, with strong inhomogeneous broadening and coupled to a cavity mode whose frequency has linear time dependence. The analysis shows that, regardless of the distribution of energy level splittings, a sharp phase transition occurs between the weak and strong cooperative emission phases near a critical photonic frequency sweeping rate. The associated scaling exponent is determined. We suggest that this phase transition can be observed in an ensemble of negatively charged NV^{-} centers in diamond interacting with a microwave half-wavelength cavity mode even in the regime of weak coupling and at strong disorder of two-level splittings.

12.
J Chem Phys ; 150(18): 184106, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091941

RESUMEN

Recent theories and experiments have explored the use of entangled photons as a spectroscopic probe of physical systems. We describe here a theoretical description for entropy production in the scattering of an entangled biphoton Fock state within an optical cavity. We develop this using perturbation theory by expanding the biphoton scattering matrix in terms of single-photon terms in which we introduce the photon-photon interaction via a complex coupling constant, ξ. We show that the von Neumann entropy provides a concise measure of this interaction. We then develop a microscopic model and show that in the limit of fast fluctuations, the entanglement entropy vanishes, whereas in the limit of slow fluctuations, the entanglement entropy depends on the magnitude of the fluctuations and reaches a maximum. Our result suggests that experiments measuring biphoton entanglement give microscopic information pertaining to exciton-exciton correlations.

13.
J Am Chem Soc ; 139(32): 11081-11088, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28719199

RESUMEN

Toward a truly photostable PbSe quantum dot (QD), we apply the thick-shell or "giant" QD structural motif to this notoriously environmentally sensitive nanocrystal system. Namely, using a sequential application of two shell-growth techniques-partial-cation exchange and successive ionic layer adsorption and reaction (SILAR)-we are able to overcoat the PbSe QDs with sufficiently thick CdSe shells to impart new single-QD-level photostability, as evidenced by suppression of both photobleaching and blinking behavior. We further reveal that the crystal structure of the CdSe shell (cubic zinc-blende or hexagonal wurtzite) plays a key role in determining the photoluminescence properties of these giant QDs, with only cubic nanocrystals sufficiently bright and stable to be observed as single emitters. Moreover, we demonstrate that crystal structure and particle shape (cubic, spherical, or tetrapodal) and, thereby, emission properties can be synthetically tuned by either withholding or including the coordinating ligand, trioctylphosphine, in the SILAR component of the shell-growth process.

15.
J Phys Chem A ; 120(19): 3109-16, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-26905014

RESUMEN

We study the collective, superradiant behavior in the system of emitter-dressed Ag nanorods. Starting from the Drude model for the plasmon oscillations, we arrive at a semiempirical Hamiltonian describing the coupling between quantized surface plasmon modes and the quantum emitters that can be controlled by manipulating their geometry, spacing, and orientation. Further, identifying the lowest polariton mode as SP-states dressed by excitons in the vicinity of k = 0, we examine conditions allowing for the polariton quantum-phase transition. Though the system is formally a 1D array, we show that the polariton states of interest can undergo a quantum-phase transition to form a Bose condensate at finite temperatures for physically accessible parameter ranges.

16.
J Am Chem Soc ; 137(11): 3755-8, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25746140

RESUMEN

Core/thick-shell giant quantum dots (gQDs) possessing type II electronic structures exhibit suppressed blinking and diminished nonradiative Auger recombination. We investigate CdSe/ZnSe and ZnSe/CdS as potential new gQDs. We show theoretically and experimentally that both can exhibit partial or complete spatial separation of an excited-state electron-hole pair (i.e., type II behavior). However, we reveal that thick-shell growth is challenged by competing processes: alloying and cation exchange. We demonstrate that these can be largely avoided by choice of shelling conditions (e.g., time, temperature, and QD core identity). The resulting CdSe/ZnSe gQDs exhibit unusual single-QD properties, principally emitting from dim gray states but having high two-exciton (biexciton) emission efficiencies, whereas ZnSe/CdS gQDs show characteristic gQD blinking suppression, though only if shelling is accompanied by partial cation exchange.

17.
Phys Rev Lett ; 115(1): 017401, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26182119

RESUMEN

Pump-dependent photoluminescence imaging and second-order photon correlation studies have been performed on individual single-walled carbon nanotubes (SWCNTs) at room temperature. These studies enable the extraction of both the exciton diffusion constant and the Auger recombination coefficient. A linear correlation between these parameters is attributed to the effect of environmental disorder in setting the exciton mean free path and capture-limited Auger recombination at this length scale. A suppression of photon antibunching is attributed to the creation of multiple spatially nonoverlapping excitons in SWCNTs, whose diffusion length is shorter than the laser spot size. We conclude that complete antibunching at room temperature requires an enhancement of the exciton-exciton annihilation rate that may become realizable in SWCNTs allowing for strong exciton localization.

18.
J Phys Chem Lett ; 15(43): 10896-10902, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39445721

RESUMEN

We propose a quantum analogue of the Huygens clock, where the phases of two spins synchronize through their interaction with a shared environment. This environment acts like the escapement mechanism in a mechanical clock, regulating the gear train and allowing discrete timing advances. In our model, the relative phases of the two spins synchronize via a mutually correlated environment. We demonstrate that several arguments can significantly reduce the cardinality of the allowed measurements for a system of qubits, thus simplifying the problem. We present a numerically efficient method to calculate the degree of quantumness in the correlations of the final density matrix, providing a tight upper bound for rank 3 and rank 4 density matrices. We suggest a potential realization of noise-induced synchronization between two nuclear spins coupled to a common ancilla undergoing dynamical decoupling.

19.
Nanoscale Horiz ; 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39495199

RESUMEN

Composite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS3 flakes to tens of nanometers and thickness to less than ten nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-infrared (1.47 eV) and activate visible-range (1.8-2.2 eV) transitions. These ultra-sharp lines (<120 µeV at 4.2 K) share the spin-correlated nature of the bulk exciton by displaying a strong linear polarization below Néel temperature. Furthermore, exciton photoluminescence lineshape analysis indicates a polaronic character VIA coupling with at-least 3 phonon modes and a comb-like Stark effect through discretization of charges in each layer. These findings augment the knowledge on the many-body nature of excitonic quasi-particles in correlated antiferromagnets and also establish the nanoscale correlated antiferromagnets as a promising platform for integrated magneto-optic devices.

20.
Phys Rev Lett ; 110(11): 117401, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166575

RESUMEN

We demonstrate that photon antibunching observed for individual nanocrystal quantum dots (NQDs) can be transformed into photon bunching characterized by super-Poissonian statistics when they are coupled to metal nanostructures (MNs). This observation indicates that, while the quantum yield of a biexciton (Q(2X)) is lower than that of a single exciton (Q(1X)) in freestanding NQDs, Q(2X) becomes greater than Q(1X) in NQDs coupled to MNs. This unique phenomenon is attributed to metal-induced quenching with a rate that scales more slowly with exciton multiplicity than the radiative decay rate and dominates over other nonradiative decay channels for both single excitons and biexcitons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA