Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ecol ; 33(5): e17263, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38318732

RESUMEN

The absence of robust interspecific isolation barriers among pantherines, including the iconic South American jaguar (Panthera onca), led us to study molecular evolution of typically rapidly evolving reproductive proteins within this subfamily and related groups. In this study, we delved into the evolutionary forces acting on the zona pellucida (ZP) gamete interaction protein family and the sperm-oocyte fusion protein pair IZUMO1-JUNO across the Carnivora order, distinguishing between Caniformia and Feliformia suborders and anticipating few significant diversifying changes in the Pantherinae subfamily. A chromosome-resolved jaguar genome assembly facilitated coding sequences, enabling the reconstruction of protein evolutionary histories. Examining sequence variability across more than 30 Carnivora species revealed that Feliformia exhibited significantly lower diversity compared to its sister taxa, Caniformia. Molecular evolution analyses of ZP2 and ZP3, subunits directly involved in sperm-recognition, unveiled diversifying positive selection in Feliformia, Caniformia and Pantherinae, although no significant changes were linked to sperm binding. Structural cross-linking ZP subunits, ZP4 and ZP1 exhibited lower levels or complete absence of positive selection. Notably, the fusion protein IZUMO1 displayed prominent positive selection signatures and sites in basal lineages of both Caniformia and Feliformia, extending along the Caniformia subtree but absent in Pantherinae. Conversely, JUNO did not exhibit any positive selection signatures across tested lineages and clades. Eight Caniformia-specific positive selected sites in IZUMO1 were detected within two JUNO-interaction clusters. Our findings provide for the first time insights into the evolutionary trajectories of ZP proteins and the IZUMO1-JUNO gamete interaction pair within the Carnivora order.


Asunto(s)
Caniformia , Carnívoros , Panthera , Animales , Masculino , Receptores de Superficie Celular/genética , Proteínas del Huevo/genética , Proteínas del Huevo/química , Proteínas del Huevo/metabolismo , Semen/metabolismo , Interacciones Espermatozoide-Óvulo/genética , Carnívoros/genética , Caniformia/metabolismo , Feliformes/metabolismo , Panthera/metabolismo , Zona Pelúcida/metabolismo
2.
BMC Biol ; 19(1): 244, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784928

RESUMEN

BACKGROUND: Mammals possess unique hearing capacities that differ significantly from those of the rest of the amniotes. In order to gain insights into the evolution of the mammalian inner ear, we aim to identify the set of genetic changes and the evolutionary forces that underlie this process. We hypothesize that genes that impair hearing when mutated in humans or in mice (hearing loss (HL) genes) must play important roles in the development and physiology of the inner ear and may have been targets of selective forces across the evolution of mammals. Additionally, we investigated if these HL genes underwent a human-specific evolutionary process that could underlie the evolution of phenotypic traits that characterize human hearing. RESULTS: We compiled a dataset of HL genes including non-syndromic deafness genes identified by genetic screenings in humans and mice. We found that many genes including those required for the normal function of the inner ear such as LOXHD1, TMC1, OTOF, CDH23, and PCDH15 show strong signatures of positive selection. We also found numerous noncoding accelerated regions in HL genes, and among them, we identified active transcriptional enhancers through functional enhancer assays in transgenic zebrafish. CONCLUSIONS: Our results indicate that the key inner ear genes and regulatory regions underwent adaptive evolution in the basal branch of mammals and along the human-specific branch, suggesting that they could have played an important role in the functional remodeling of the cochlea. Altogether, our data suggest that morphological and functional evolution could be attained through molecular changes affecting both coding and noncoding regulatory regions.


Asunto(s)
Sordera , Pérdida Auditiva , Animales , Cadherinas , Audición/genética , Mamíferos/genética , Proteínas de la Membrana , Ratones , Pez Cebra/genética , Proteínas de Pez Cebra
3.
Mol Biol Evol ; 36(8): 1653-1670, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31137036

RESUMEN

The mammalian inner ear possesses functional and morphological innovations that contribute to its unique hearing capacities. The genetic bases underlying the evolution of this mammalian landmark are poorly understood. We propose that the emergence of morphological and functional innovations in the mammalian inner ear could have been driven by adaptive molecular evolution. In this work, we performed a meta-analysis of available inner ear gene expression data sets in order to identify genes that show signatures of adaptive evolution in the mammalian lineage. We analyzed ∼1,300 inner ear expressed genes and found that 13% show signatures of positive selection in the mammalian lineage. Several of these genes are known to play an important function in the inner ear. In addition, we identified that a significant proportion of genes showing signatures of adaptive evolution in mammals have not been previously reported to participate in inner ear development and/or physiology. We focused our analysis in two of these genes: STRIP2 and ABLIM2 by generating null mutant mice and analyzed their auditory function. We found that mice lacking Strip2 displayed a decrease in neural response amplitudes. In addition, we observed a reduction in the number of afferent synapses, suggesting a potential cochlear neuropathy. Thus, this study shows the usefulness of pursuing a high-throughput evolutionary approach followed by functional studies to track down genes that are important for inner ear function. Moreover, this approach sheds light on the genetic bases underlying the evolution of the mammalian inner ear.


Asunto(s)
Evolución Biológica , Proteínas del Citoesqueleto/genética , Oído Interno/metabolismo , Proteínas con Dominio LIM/genética , Mamíferos/genética , Proteínas de Microfilamentos/genética , Selección Genética , Adaptación Biológica , Animales , Ratones , Transcriptoma
4.
Gen Comp Endocrinol ; 299: 113591, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32828812

RESUMEN

Mammalian acid-labile subunit (ALS) is a serum protein that binds binary complexes between Insulin-like growth factors (IGFs) and Insulin-like growth factor-binding proteins (IGFBPs) extending their half-life and keeping them in the vasculature. Human ALS deficiency (ACLSD), due to homozygous or compound heterozygous mutations in IGFALS, leads to moderate short stature with reduced levels of IGF-I and IGFBP-3. There is only one corresponding zebrafish ortholog gene and it has not yet been studied. In this study we elucidate the role of igfals during zebrafish development. In zebrafish embryos igfals mRNA is expressed throughout development, mainly in the brain and subsequently also in the gut and swimbladder. To determine its role during development, we knocked down igfals gene product using morpholinos (MOs). Igfals morphant embryos displayed dorsalization in different degrees of severity, including a shortened trunk and loss of tail. Furthermore, co-injection of human IGFALS (hIGFALS) mRNA was able to rescue the MO-induced phenotype. Finally, overexpression of either hIGFALS or zebrafish igfals (zigfals) mRNA leads to ventralization of embryos including a reduced head and enlarged tail. These findings suggest that als plays an important role in dorso-ventral patterning during zebrafish development.


Asunto(s)
Proteínas Portadoras/metabolismo , Glicoproteínas/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Mutación
5.
Proc Natl Acad Sci U S A ; 114(8): 2054-2059, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28179572

RESUMEN

The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the ßV giant spectrin, a major component of the outer hair cells' cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-ßV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin ßV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells' cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.


Asunto(s)
Movimiento Celular/fisiología , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/fisiología , Mamíferos/fisiología , Espectrina/genética , Actinas/metabolismo , Adaptación Biológica/genética , Animales , Aves/fisiología , Simulación por Computador , Fenómenos Electrofisiológicos , Células HeLa , Audición/fisiología , Humanos , Ratones , Mutación , Filogenia , Espectrina/metabolismo , Xenopus laevis/fisiología
6.
Proc Natl Acad Sci U S A ; 109(11): 4308-13, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371598

RESUMEN

The α9 and α10 cholinergic nicotinic receptor subunits assemble to form the receptor that mediates efferent inhibition of hair cell function within the auditory sensory organ, a mechanism thought to modulate the dynamic range of hearing. In contrast to all nicotinic receptors, which serve excitatory neurotransmission, the activation of α9α10 produces hyperpolarization of hair cells. An evolutionary analysis has shown that the α10 subunit exhibits signatures of positive selection only along the mammalian lineage, strongly suggesting the acquisition of a unique function. To establish whether mammalian α9α10 receptors have acquired distinct functional properties as a consequence of this evolutionary pressure, we compared the properties of rat and chicken recombinant and native α9α10 receptors. Our main finding in the present work is that, in contrast to the high (pCa(2+)/pMonovalents ∼10) Ca(2+) permeability reported for rat α9α10 receptors, recombinant and native chicken α9α10 receptors have a much lower permeability (∼2) to this cation, comparable to that of neuronal α4ß2 receptors. Moreover, we show that, in contrast to α10, α7 as well as α4 and ß2 nicotinic subunits are under purifying selection in vertebrates, consistent with the conserved Ca(2+) permeability reported across species. These results have important consequences for the activation of signaling cascades that lead to hyperpolarization of hair cells after α9α10 gating at the cholinergic-hair cell synapse. In addition, they suggest that high Ca(2+) permeability of the α9α10 cholinergic nicotinic receptor might have evolved together with other features that have given the mammalian ear an expanded high-frequency sensitivity.


Asunto(s)
Calcio/metabolismo , Permeabilidad de la Membrana Celular/genética , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Filogenia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Pollos , Evolución Molecular , Células Ciliadas Auditivas/efectos de los fármacos , Humanos , Funciones de Verosimilitud , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Subunidades de Proteína/genética , Ratas , Proteínas Recombinantes/metabolismo , Xenopus laevis
7.
Mol Biol Evol ; 30(5): 1088-102, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23408798

RESUMEN

To identify the evolutionary genetic novelties that contributed to shape human-specific traits such as the use of a complex language, long-term planning and exceptional learning abilities is one of the ultimate frontiers of modern biology. Evolutionary signatures of functional shifts could be detected by comparing noncoding regions that are highly conserved across mammals or primates and rapidly accumulated nucleotide substitutions only in the lineage leading to humans. As gene loci densely populated with human-accelerated elements (HAEs) are more likely to have contributed to human-specific novelties, we sought to identify the transcriptional units and genomic 1 Mb intervals of the entire human genome carrying the highest number of HAEs. To this end, we took advantage of four available data sets of human genomic accelerated regions obtained through different comparisons and algorithms and performed a meta-analysis of the combined data. We found that the brain developmental transcription factor neuronal PAS domain-containing protein 3 (NPAS3) contains the largest cluster of noncoding-accelerated regions in the human genome with up to 14 elements that are highly conserved in mammals, including primates, but carry human-specific nucleotide substitutions. We then tested the ability of the 14 HAEs identified at the NPAS3 locus to act as transcriptional regulatory sequences in a reporter expression assay performed in transgenic zebrafish. We found that 11 out of the 14 HAEs present in NPAS3 act as transcriptional enhancers during development, particularly within the nervous system. As NPAS3 is known to play a crucial role during mammalian brain development, our results indicate that the high density of HAEs present in the human NPAS3 locus could have modified the spatiotemporal expression pattern of NPAS3 in the developing human brain and, therefore, contributed to human brain evolution.


Asunto(s)
Encéfalo/metabolismo , Genoma Humano/genética , Proteínas del Tejido Nervioso/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Humanos
8.
Mol Biol Evol ; 29(5): 1441-50, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22319145

RESUMEN

Bats are the only mammals that use highly developed laryngeal echolocation, a sensory mechanism based on the ability to emit laryngeal sounds and interpret the returning echoes to identify objects. Although this capability allows bats to orientate and hunt in complete darkness, endowing them with great survival advantages, the genetic bases underlying the evolution of bat echolocation are still largely unknown. Echolocation requires high-frequency hearing that in mammals is largely dependent on somatic electromotility of outer hair cells. Then, understanding the molecular evolution of outer hair cell genes might help to unravel the evolutionary history of echolocation. In this work, we analyzed the molecular evolution of two key outer hair cell genes: the voltage-gated potassium channel gene KCNQ4 and CHRNA10, the gene encoding the α10 nicotinic acetylcholine receptor subunit. We reconstructed the phylogeny of bats based on KCNQ4 and CHRNA10 protein and nucleotide sequences. A phylogenetic tree built using KCNQ4 amino acid sequences showed that two paraphyletic clades of laryngeal echolocating bats grouped together, with eight shared substitutions among particular lineages. In addition, our analyses indicated that two of these parallel substitutions, M388I and P406S, were probably fixed under positive selection and could have had a strong functional impact on KCNQ4. Moreover, our results indicated that KCNQ4 evolved under positive selection in the ancestral lineage leading to mammals, suggesting that this gene might have been important for the evolution of mammalian hearing. On the other hand, we found that CHRNA10, a gene that evolved adaptively in the mammalian lineage, was under strong purifying selection in bats. Thus, the CHRNA10 amino acid tree did not show echolocating bat monophyly and reproduced the bat species tree. These results suggest that only a subset of hearing genes could underlie the evolution of echolocation. The present work continues to delineate the genetic bases of echolocation and ultrasonic hearing in bats.


Asunto(s)
Quirópteros/genética , Ecolocación , Evolución Molecular , Canales de Potasio KCNQ/genética , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Filogenia , Receptores Nicotínicos , Selección Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA