Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
BMC Plant Biol ; 23(1): 401, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612632

RESUMEN

BACKGROUND: Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS: Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION: These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.


Asunto(s)
Arabidopsis , Productos Agrícolas , Biomarcadores , Productos Agrícolas/genética , Fenotipo , Arabidopsis/genética , Fosfatos
2.
Bioorg Chem ; 110: 104810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33744806

RESUMEN

A new myo-inositol pentakisphosphate was synthesized, which featured a dansyl group at position C-5. The fluorescent tag was removed from the inositol by a 6-atom spacer to prevent detrimental steric interactions in the catalytic site of phytases. The PEG linker was used in order to enhance hydrophilicity and biocompatibility of the new artificial substrate. Computational studies showed a favorable positioning in the catalytic site of phytases. Enzymatic assays demonstrated that the tethered myo-inositol was processed by two recombinant phytases Phy-A and Phy-C, classified respectively as acid and alkaline phytases, with similar rates of phosphate release compared to their natural substrate.


Asunto(s)
6-Fitasa/análisis , Colorantes Fluorescentes/química , Fosfatidilcolinas/química , Ácido Fítico/química , 6-Fitasa/metabolismo , Colorantes Fluorescentes/síntesis química , Modelos Moleculares , Estructura Molecular , Ácido Fítico/síntesis química , Especificidad por Sustrato
3.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-33860247

RESUMEN

The microbial loop has been suggested as an alternative route for better utilization of phytate, a poorly available P source to plants. We hypothesized that bacterial grazer activity might dramatically enhance bacterial migration and proliferation, increasing the probability of phytate hydrolysis by bacterial phytases and, thus, phytate mineralization and release of free phosphate. We tested this hypothesis in a two-compartment system with a solid medium containing phytate or free phosphate as the source of P. Two bacterial species, B. subtilis 168 or Bradyrhizobium sp., with or without bacterial grazing nematodes belonging to Acrobeloides sp. previously fed on each of the bacterial species, were inoculated at a single point in the medium. Whatever the P source, nematode migration within both zones allowed the proliferation of bacteria. However, B. subtilis 168 was more efficient in using phytate than Bradyrhizobium sp. since the highest bacterial cell density and free phosphate concentrations were reached by Acrobeloides sp. fed on B. subtilis 168. The grazer activity seemed to be crucial to enhance phytate mineralization, despite Acrobeloides sp. showing a higher preference to feed on Bradyrhizobium sp. This study provides new insights into the effects of bacterial grazer activity on phytate mineralization.

4.
Mycorrhiza ; 29(6): 637-648, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31732817

RESUMEN

Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.


Asunto(s)
Basidiomycota , Micorrizas , Brasil , Raíces de Plantas , Árboles
5.
New Phytol ; 220(4): 1047-1058, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29888395

RESUMEN

1047 I. Introduction 1047 II. Mobilization of soil N/P by ECM fungi 1048 III. N/P uptake 1048 IV. N/P assimilation 1049 V. N/P storage and remobilization 1049 VI. Hyphal N/P efflux at the plant-fungus interface 1052 VII. Conclusion and research needs 1054 Acknowledgements 1055 References 1055 SUMMARY: Nutrient homeostasis is essential for fungal cells and thus tightly adapted to the local demand in a mycelium with hyphal specialization. Based on selected ectomycorrhizal (ECM) fungal models, we outlined current concepts of nitrogen and phosphate nutrition and their limitations, and included knowledge from Baker's yeast when major gaps had to be filled. We covered the entire pathway from nutrient mobilization, import and local storage, distribution within the mycelium and export at the plant-fungus interface. Even when nutrient import and assimilation were broad issues for ECM fungi, we focused mainly on nitrate and organic phosphorus uptake, as other nitrogen/phosphorus (N/P) sources have been covered by recent reviews. Vacuolar N/P storage and mobilization represented another focus point of this review. Vacuoles are integrated into cellular homeostasis and central for an ECM mycelium at two locations: soil-growing hyphae and hyphae of the plant-fungus interface. Vacuoles are also involved in long-distance transport. We further discussed potential mechanisms of bidirectional long-distance nutrient transport (distances from millimetres to metres). A final focus of the review was N/P export at the plant-fungus interface, where we compared potential efflux mechanisms and pathways, and discussed their prerequisites.


Asunto(s)
Micorrizas/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Hifa/metabolismo , Filogenia , Plantas/microbiología
6.
New Phytol ; 220(4): 1185-1199, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29944179

RESUMEN

Through a mutualistic relationship with woody plant roots, ectomycorrhizal fungi provide growth-limiting nutrients, including inorganic phosphate (Pi), to their host. Reciprocal trades occur at the Hartig net, which is the symbiotic interface of ectomycorrhizas where the two partners are symplasmically isolated. Fungal Pi must be exported to the symbiotic interface, but the proteins facilitating this transfer are unknown. In the present study, we combined transcriptomic, microscopy, whole plant physiology, X-ray fluorescence mapping, 32 P labeling and fungal genetic approaches to unravel the role of HcPT2, a fungal Pi transporter, during the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. We localized HcPT2 in the extra-radical hyphae and the Hartig net and demonstrated its determinant role for both the establishment of ectomycorrhizas and Pi allocation towards P. pinaster. We showed that the host plant induces HcPT2 expression and that the artificial overexpression of HcPT2 is sufficient to significantly enhance Pi export towards the central cylinder. Together, our results reveal that HcPT2 plays an important role in ectomycorrhizal symbiosis, affecting both Pi influx in the mycelium and efflux towards roots under the control of P. pinaster.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hebeloma/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Micorrizas/fisiología , Simbiosis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Hebeloma/genética , Hebeloma/crecimiento & desarrollo , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Micelio/metabolismo , Fosfatos/metabolismo , Radioisótopos de Fósforo , Pinus/microbiología , Regulación hacia Arriba/genética
7.
Plant Cell Environ ; 40(2): 190-202, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27743400

RESUMEN

Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.


Asunto(s)
Hebeloma/fisiología , Interacciones Huésped-Patógeno , Espectroscopía de Resonancia Magnética , Micorrizas/fisiología , Radioisótopos de Fósforo/metabolismo , Fósforo/metabolismo , Pinus/microbiología , Polifosfatos/metabolismo , Hifa/metabolismo , Pinus/metabolismo , Zea mays/metabolismo
8.
J Nematol ; 47(4): 296-301, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26941457

RESUMEN

Dispersion of bacterivorous nematodes in soil is a crucial ecological process that permits settlement and exploitation of new bacterial-rich patches. Although plant roots, by modifying soil structure, are likely to influence this process, they have so far been neglected. In this study, using an original three-compartment microcosm experimental design and polyvinyl chloride (PVC) bars to mimic plant roots, we tested the ability of roots to improve the dispersion of bacterivorous nematode populations through two wet, nonuniform granular (glass bead) media imitating contrasting soil textures. We showed that artificial roots increased migration time of bacterivorous nematode populations in the small-bead medium, suggesting that plant roots may play an important role in nematode dispersion in fine-textured soils or when soil compaction is high.

9.
Planta ; 239(4): 901-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24407511

RESUMEN

Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 µM phytate (C6H18O24P6) or 75 µmol Pi (K2HPO4), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.


Asunto(s)
6-Fitasa/genética , Bacillus subtilis/enzimología , Phaseolus/microbiología , Fósforo/metabolismo , Ácido Fítico/metabolismo , 6-Fitasa/metabolismo , Bacillus subtilis/genética , Fijación del Nitrógeno , Phaseolus/citología , Phaseolus/crecimiento & desarrollo , Nodulación de la Raíz de la Planta , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Brotes de la Planta/citología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/microbiología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Rizosfera , Simbiosis
10.
New Phytol ; 201(3): 951-960, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24279702

RESUMEN

Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hebeloma/metabolismo , Interacciones Huésped-Patógeno , Micorrizas/metabolismo , Fósforo/metabolismo , Pinus/metabolismo , Potasio/metabolismo , Transporte Biológico/efectos de los fármacos , ADN Bacteriano/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hebeloma/efectos de los fármacos , Hebeloma/genética , Interacciones Huésped-Patógeno/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/metabolismo , Micorrizas/efectos de los fármacos , Micorrizas/genética , Fenotipo , Fósforo/farmacología , Pinus/efectos de los fármacos , Pinus/microbiología , Potasio/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/microbiología , Sodio/metabolismo
11.
Fungal Genet Biol ; 58-59: 53-61, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23850603

RESUMEN

Mycorrhizal exchange of nutrients between fungi and host plants involves a specialization and polarization of the fungal plasma membrane adapted for the uptake from the soil and for secretion of nutrient ions towards root cells. In addition to the current progress in identification of membrane transport systems of both symbiotic partners, data concerning the transcriptional and translational regulation of these proteins are needed to elucidate their role for symbiotic functions. To answer whether the formerly described Pi-dependent expression of the phosphate transporter HcPT1.1 from Hebeloma cylindrosporum is the result of its promoter activity, we introduced promoter-EGFP fusion constructs in the fungus by Agrotransformation. Indeed, HcPT1.1 expression in pure fungal cultures quantified and visualized by EGFP under control of the HcPT1.1 promoter was dependent on external Pi concentrations, low Pi stimulating the expression. Furthermore, to study expression and localization of the phosphate transporter HcPT1.1 in symbiotic conditions, presence of transcripts and proteins was analyzed by the in situ hybridization technique as well as by immunostaining of proteins. In ectomycorrhiza, expression of the phosphate transporter was clearly enhanced by Pi-shortage indicating its role in Pi nutrition in the symbiotic association. Transcripts were detected in external hyphae and in the hyphal mantle, proteins in addition also within the Hartig net. Exploiting the transformable fungus H. cylindrosporum, Pi-dependent expression of the fungal transporter HcPT1.1 as result from its promoter activity as well as transcript and protein localization in ectomycorrhizal symbiosis are shown.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Regiones Promotoras Genéticas , Hebeloma/genética , Hebeloma/metabolismo , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Pinus/microbiología , Pinus/fisiología , Transporte de Proteínas , Simbiosis
12.
Mycorrhiza ; 23(8): 597-625, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23572325

RESUMEN

Understanding the mechanisms that underlie nutrient use efficiency and carbon allocation along with mycorrhizal interactions is critical for managing croplands and forests soundly. Indeed, nutrient availability, uptake and exchange in biotrophic interactions drive plant growth and modulate biomass allocation. These parameters are crucial for plant yield, a major issue in the context of high biomass production. Transport processes across the polarized membrane interfaces are of major importance in the functioning of the established mycorrhizal association as the symbiotic relationship is based on a 'fair trade' between the fungus and the host plant. Nutrient and/or metabolite uptake and exchanges, at biotrophic interfaces, are controlled by membrane transporters whose regulation patterns are essential for determining the outcome of plant-fungus interactions and adapting to changes in soil nutrient quantity and/or quality. In the present review, we summarize the current state of the art regarding transport systems in the two major forms of mycorrhiza, namely ecto- and arbuscular mycorrhiza.


Asunto(s)
Hongos/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología , Simbiosis , Biomasa , Hongos/crecimiento & desarrollo , Desarrollo de la Planta , Plantas/metabolismo
13.
Front Plant Sci ; 14: 1135483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426963

RESUMEN

Ectomycorrhizal (ECM) fungi are associated with the roots of woody plants in temperate and boreal forests and help them to acquire water and nutrients, particularly phosphorus (P). However, the molecular mechanisms responsible for the transfer of P from the fungus to the plant in ectomycorrhizae are still poorly understood. In the model association between the ECM fungus Hebeloma cylindrosporum and its host plant Pinus pinaster, we have shown that the fungus, which possesses three H+:Pi symporters (HcPT1.1, HcPT1.2 and HcPT2), expresses mainly HcPT1.1 and HcPT2 in the extraradical and intraradical hyphae of ectomycorrhizae to transport P from the soil to colonized roots. The present study focuses on the role of the HcPT1.1 protein in plant P nutrition, in function of P availability. We artificially overexpressed this P transporter by fungal Agrotransformation and investigated the effect of the different lines, wild-type and transformed ones, on plant P accumulation, the distribution of HcPT1.1 and HcPT2 proteins in ectomycorrhizae by immunolocalization, and 32P efflux in an experimental system mimicking intraradical hyphae. Surprisingly, we showed that plants interacting with transgenic fungal lines overexpressing HcPT1.1 did not accumulate more P in their shoots than plants colonized with the control ones. Although the overexpression of HcPT1.1 did not affect the expression levels of the other two P transporters in pure cultures, it induced a strong reduction in HcPT2 proteins in ectomycorrhizae, particularly in intraradical hyphae, but still improved the P status of host plant shoots compared with non-mycorrhizal plants. Finally, 32P efflux from hyphae was higher in lines overexpressing HcPT1.1 than in the control ones. These results suggest that a tight regulation and/or a functional redundancy between the H+:Pi symporters of H. cylindrosporum might exist to ensure a sustainable P delivery to P. pinaster roots.

14.
PLoS One ; 18(3): e0283437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36961864

RESUMEN

Until now, the solubilization capacities of insoluble mineral P by soil microorganisms have been screened in vitro with media containing NH4+ as a nitrogen source. This presence of NH4+ will lead to an acidification of the medium responsible for the solubilization of the insoluble P. However, besides proton release, the production of organic acids can play a very important role in the release of free P. This physiological mechanism can largely depend on the source of nitrogen (NH4+vs NO3-) assimilated by the bacteria but the influence of the N source on the production of organic acids has yet to be studied. Our aim was to investigate if the N source assimilated by bacteria and the soil characteristics such as the dominant N source (NH4+vs NO3-) and CaCO3 contents might influence the bacterial capacities to solubilize rock phosphate. To fill this objective, we screened the capacity of bacteria isolated from 3 soils to solubilize rock phosphate in vitro in presence of NH4+or NO3-. Then, we selected the most efficient bacterial strains to identify and quantify the release of organic anions into the medium. Among the two hundred and forty-three bacterial strains isolated from the 3 soils, nine and seven isolates were identified with the highest % rock phosphate-solubilization values with NH4+ or NO3- as the sole N-source. Only one strain was able to release free Pi with NH4+ or NO3- as the sole N-source. The most predominant organic acids released by almost all isolates were gluconic acid, lactic acid, glycolic acid, acetic acid, formic acid and pyruvic acid regardless the N-source. However, with NO3- as source of N, the highest concentrations on those acids were found together with the highest release of free Pi into the medium. Molecular analysis of 16S rRNA indicated that almost all strains belonged to Bacillus and Paenibacillus genera. The PCA analysis between soil properties and bacterial capacities to release organic acids and free Pi also revealed that soil factors such as CaCO3 and soil NO3- content positively influenced the release of organic acids by bacteria grown in vitro. Our results concluded that the bacterial rock phosphate-solubilization was intimately related to organic acids production which in turn seemed to be driven by the assimilation of NO3- by bacteria. Therefore, the N-source might be considered a key factor to take into consideration during the screening and selection of suitable strains involved in the P-solubilization.


Asunto(s)
Nitratos , Fosfatos , Suelo , Solubilidad , ARN Ribosómico 16S/genética , Carbonato de Calcio , Bacterias , Nitrógeno , Microbiología del Suelo
15.
Plants (Basel) ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36840150

RESUMEN

We hypothesized that the nitrogen-fixing tree Acacia mangium could improve the growth and nitrogen nutrition of non-fixing tree species such as Eucalyptus. We measured the N-mineralization and respiration rates of soils sampled from plots covered with Acacia, Eucalyptus or native vegetation at two tropical sites (Itatinga in Brazil and Kissoko in the Congo) in the laboratory. We used a bioassay to assess N bioavailability to eucalypt seedlings grown with and without chemical fertilization for at least 6 months. At each site, Eucalyptus seedling growth and N bioavailability followed the same trends as the N-mineralization rates in soil samples. However, despite lower soil N-mineralization rates under Acacia in the Congo than in Brazil, Eucalyptus seedling growth and N bioavailability were much greater in the Congo, indicating that bioassays in pots are more accurate than N-mineralization rates when predicting the growth of eucalypt seedlings. Hence, in the Congo, planting Acacia mangium could be an attractive option to maintain the growth and N bioavailability of the non-fixing species Eucalyptus while decreasing chemical fertilization. Plant bioassays could help determine if the introduction of N2-fixing trees will improve the growth and mineral nutrition of non-fixing tree species in tropical planted forests.

16.
Plant Cell Environ ; 34(8): 1258-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21477119

RESUMEN

We have dissected the influences of apoplastic pH and cell turgor on short-term responses of leaf growth to plant water status, by using a combination of a double-barrelled pH-selective microelectrodes and a cell pressure probe. These techniques were used, together with continuous measurements of leaf elongation rate (LER), in the (hidden) elongating zone of the leaves of intact maize plants while exposing roots to various treatments. Polyethylene glycol (PEG) reduced water availability to roots, while acid load and anoxia decreased root hydraulic conductivity. During the first 30 min, acid load and anoxia induced moderate reductions in leaf growth and turgor, with no effect on leaf apoplastic pH. PEG stopped leaf growth, while turgor was only partially reduced. Rapid alkalinization of the apoplast, from pH 4.9 ± 0.3 to pH 5.8 ± 0.2 within 30 min, may have participated to this rapid growth reduction. After 60 min, leaf growth inhibition correlated well with turgor reduction across all treatments, supporting a growth limitation by hydraulics. We conclude that apoplastic alkalinization may transiently impair the control of leaf growth by cell turgor upon abrupt water stress, whereas direct hydraulic control of growth predominates under moderate conditions and after a 30-60 min delay following imposition of water stress.


Asunto(s)
Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Zea mays/fisiología , Deshidratación , Regulación hacia Abajo , Combinación de Medicamentos , Concentración de Iones de Hidrógeno , Microelectrodos , Presión Osmótica , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Polietileno/farmacología , Procaína , Propionatos/farmacología , Estrés Fisiológico , Zea mays/efectos de los fármacos
17.
Mycorrhiza ; 21(7): 589-600, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21344212

RESUMEN

The aim of a joint effort by different research teams was to provide an improved procedure for enzyme activity profiling of field-sampled ectomycorrhizae, including recommendations on the best conditions and maximum duration for storage of ectomycorrhizal samples. A more simplified and efficient protocol compared to formerly published procedures was achieved by using manufactured 96-filter plates in combination with a vacuum manifold and by optimizing incubation times. Major improvements were achieved by performing the series of eight enzyme assays with a single series of root samples instead of two series, reducing the time needed for sample preparation, minimizing error-prone steps such as pipetting and morphotyping, and facilitating subsequent DNA analyses due to the reduced sequencing effort. The best preservation of samples proved to be storage in soil at 4-6 °C in the form of undisturbed soil cores containing roots. Enzyme activities were maintained for up to 4 weeks under these conditions. Short-term storage of washed roots and ectomycorrhizal tips overnight in water did not cause substantial changes in enzyme activity profiles. No optimal means for longer-term storage by freezing at -20 °C or storage in 100% ethanol were recommended.


Asunto(s)
Enzimas/análisis , Micología/métodos , Micorrizas/enzimología , Raíces de Plantas/microbiología , Preservación Biológica/métodos , Frío , Técnicas Microbiológicas/métodos , Factores de Tiempo
18.
Sci Total Environ ; 795: 148934, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328927

RESUMEN

Plant diversification through crop rotation or agroforestry is a promising way to improve sustainability of agroecosystems. Nonetheless, criteria to select the most suitable plant communities for agroecosystems diversification facing contrasting environmental constraints need to be refined. Here, we compared the impacts of 24 different plant communities on soil fertility across six tropical agroecosystems: either on highly weathered Ferralsols, with strong P limitation, or on partially weathered soils derived from volcanic material, with major N limitation. In each agroecosystem, we tested several plant communities for diversification, as compared to a matching low diversity management for their cropping system. Plant residue restitution, N, P and lignin contents were measured for each plant community. In parallel, the soil under each community was analyzed for organic C and N, inorganic N, Olsen P, soil pH and nematode community composition. Soil potential fertility was assessed with plant bioassays under greenhouse controlled climatic conditions. Overall, plant diversification had a positive effect on soil fertility across all sites, with contrasting effects depending on soil type and legumes presence in the community. Communities with legumes improved soil fertility indicators of volcanic soils, which was demonstrated through significantly higher plant biomass production in the bioassays (+18%) and soil inorganic N (+26%) compared to the low diversity management. Contrastingly, communities without legumes were the most beneficial in Ferralsols, with increases in plant biomass production in the bioassays (+39%), soil Olsen P (+46%), soil C (+26%), and pH (+5%). Piecewise structural equation models with Shipley's test revealed that plant diversification impacts on volcanic soil fertility were related to soil N availability, driven by litter N. Meanwhile, Ferralsols fertility was related to soil P availability, driven by litter P. These findings underline the importance of multifactorial and multi-sites experiments to inform trait-based frameworks used in designing optimal plant diversification in agroecological systems.


Asunto(s)
Fabaceae , Nematodos , Animales , Biomasa , Suelo , Microbiología del Suelo
19.
Plant J ; 57(6): 1092-102, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19054369

RESUMEN

Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hebeloma/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Pinus/metabolismo , Clonación Molecular , ADN Complementario/genética , ADN de Hongos/genética , Etiquetas de Secuencia Expresada , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Biblioteca de Genes , Hebeloma/metabolismo , Datos de Secuencia Molecular , Micorrizas/genética , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Pinus/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN , Simbiosis
20.
Sci Total Environ ; 742: 140535, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721724

RESUMEN

Many studies have shown that introducing N2-fixing trees (e.g. Acacia mangium) in eucalypt plantations can increase soil N availability as a result of biological N2 fixation and faster N cycling. Some studies have also shown improved eucalypt P nutrition. However, the effects of N2-fixing trees on P cycling in tropical soils remain poorly understood and site-dependent. Our study aimed to assess the effects of planting A. mangium trees in areas managed over several decades with eucalypt plantations on soil organic P (Po) forms and low molecular weight organic acids (LMWOAs). Soil samples were collected from two tropical sites, one in Brazil and one in the Congo. Five different treatments were sampled at each site: monospecific acacia, monospecific eucalypt, below acacias in mixed-species, below eucalypts in mixed-species as well as native vegetation. Po forms and LMWOAs were identified in sodium hydroxide soil extracts using ion chromatography and relationships between these data and available P were determined. At both sites, the concentrations of most Po forms and LMWOAs were different between native ecosystems and monospecific eucalypt and acacia plots. Also, patterns of Po and LMWOAs were clearly separated, with glucose-6-P found mainly under acacia and phytate and oxalate mainly under eucalypt. Despite the strongest changes occurred at site with a higher N2 fixation and root development, acacia introduction was able to change the profile of organic P and LMWOAs in <10 years. The variations between available Pi, Po and LMWOA forms showed that P cycling was dominated by different processes at each site, that are rather physicochemical (via Pi desorption after LMWOAs release) at Itatinga and biological (via organic P mineralization) at Kissoko. Specific patterns of Po and LMWOAs forms found in soil sampled under acacia or eucalypt would therefore explain the effect of acacia introduction in both sites.


Asunto(s)
Acacia , Árboles , Brasil , Ecosistema , Peso Molecular , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA