Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 578(7796): 572-576, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051590

RESUMEN

Levels of gene expression underpin organismal phenotypes1,2, but the nature of selection that acts on gene expression and its role in adaptive evolution remain unknown1,2. Here we assayed gene expression in rice (Oryza sativa)3, and used phenotypic selection analysis to estimate the type and strength of selection on the levels of more than 15,000 transcripts4,5. Variation in most transcripts appears (nearly) neutral or under very weak stabilizing selection in wet paddy conditions (with median standardized selection differentials near zero), but selection is stronger under drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than are antagonistically pleiotropic6 (0.04%), and transcripts that display lower levels of expression and stochastic noise7-9 and higher levels of plasticity9 are under stronger selection. Selection strength was further weakly negatively associated with levels of cis-regulation and network connectivity9. Our multivariate analysis suggests that selection acts on the expression of photosynthesis genes4,5, but that the efficacy of selection is genetically constrained under drought conditions10. Drought selected for earlier flowering11,12 and a higher expression of OsMADS18 (Os07g0605200), which encodes a MADS-box transcription factor and is a known regulator of early flowering13-marking this gene as a drought-escape gene11,12. The ability to estimate selection strengths provides insights into how selection can shape molecular traits at the core of gene action.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Selección Genética/genética , Sequías , Evolución Molecular , Flores/genética , Flores/crecimiento & desarrollo , Aptitud Genética/genética , Oryza/crecimiento & desarrollo , Fotosíntesis/genética , Hojas de la Planta/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Factores de Tiempo , Factores de Transcripción/metabolismo
2.
Plant Cell ; 34(2): 759-783, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34791424

RESUMEN

Rice (Oryza sativa) was domesticated around 10,000 years ago and has developed into a staple for half of humanity. The crop evolved and is currently grown in stably wet and intermittently dry agro-ecosystems, but patterns of adaptation to differences in water availability remain poorly understood. While previous field studies have evaluated plant developmental adaptations to water deficit, adaptive variation in functional and hydraulic components, particularly in relation to gene expression, has received less attention. Here, we take an evolutionary systems biology approach to characterize adaptive drought resistance traits across roots and shoots. We find that rice harbors heritable variation in molecular, physiological, and morphological traits that is linked to higher fitness under drought. We identify modules of co-expressed genes that are associated with adaptive drought avoidance and tolerance mechanisms. These expression modules showed evidence of polygenic adaptation in rice subgroups harboring accessions that evolved in drought-prone agro-ecosystems. Fitness-linked expression patterns allowed us to identify the drought-adaptive nature of optimizing photosynthesis and interactions with arbuscular mycorrhizal fungi. Taken together, our study provides an unprecedented, integrative view of rice adaptation to water-limited field conditions.


Asunto(s)
Adaptación Fisiológica/fisiología , Sequías , Variación Genética , Oryza/fisiología , Productos Agrícolas/fisiología , Domesticación , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Micorrizas/fisiología , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Selección Genética , Biología de Sistemas
3.
Plant Physiol ; 192(3): 1696-1710, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37129240

RESUMEN

The genus Vaccinium L. (Ericaceae) contains premium berryfruit crops, including blueberry, cranberry, bilberry, and lingonberry. Consumption of Vaccinium berries is strongly associated with various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids, including the anthocyanins that provide the attractive red and blue berry colors. Because these phytochemicals are increasingly appealing to consumers, they have become a crop breeding target. There has been substantial recent progress in Vaccinium genomics and genetics together with new functional data on the transcriptional regulation of flavonoids. This is helping to unravel the developmental control of flavonoids and identify genetic regions and genes that can be selected for to further improve Vaccinium crops and advance our understanding of flavonoid regulation and biosynthesis across a broader range of fruit crops. In this update we consider the recent progress in understanding flavonoid regulation in fruit crops, using Vaccinium as an example and highlighting the significant gains in both genomic tools and functional analysis.


Asunto(s)
Flavonoides , Vaccinium , Vaccinium/genética , Antocianinas , Frutas/genética , Fitomejoramiento
4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34697247

RESUMEN

Strawberry (Fragaria spp.) has emerged as a model system for various fundamental and applied research in recent years. In total, the genomes of five different species have been sequenced over the past 10 y. Here, we report chromosome-scale reference genomes for five strawberry species, including three newly sequenced species' genomes, and genome resequencing data for 128 additional accessions to estimate the genetic diversity, structure, and demographic history of key Fragaria species. Our analyses obtained fully resolved and strongly supported phylogenies and divergence times for most diploid strawberry species. These analyses also uncovered a new diploid species (Fragaria emeiensis Jia J. Lei). Finally, we constructed a pan-genome for Fragaria and examined the evolutionary dynamics of gene families. Notably, we identified multiple independent single base mutations of the MYB10 gene associated with white pigmented fruit shared by different strawberry species. These reference genomes and datasets, combined with our phylogenetic estimates, should serve as a powerful comparative genomic platform and resource for future studies in strawberry.


Asunto(s)
Evolución Biológica , Fragaria/genética , Genoma de Planta , Fragaria/clasificación , Variación Genética , Filogeografía , Pigmentación/genética , Selección Genética , Secuenciación Completa del Genoma
5.
New Phytol ; 237(3): 1024-1039, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35962608

RESUMEN

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Asunto(s)
Arándanos Azules (Planta) , Tetraploidía , Arándanos Azules (Planta)/genética , Patrón de Herencia , Poliploidía , Cromosomas
6.
Plant Cell ; 29(9): 2150-2167, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28814644

RESUMEN

Recent studies have shown that one of the parental subgenomes in ancient polyploids is generally more dominant, having retained more genes and being more highly expressed, a phenomenon termed subgenome dominance. The genomic features that determine how quickly and which subgenome dominates within a newly formed polyploid remain poorly understood. To investigate the rate of emergence of subgenome dominance, we examined gene expression, gene methylation, and transposable element (TE) methylation in a natural, <140-year-old allopolyploid (Mimulus peregrinus), a resynthesized interspecies triploid hybrid (M. robertsii), a resynthesized allopolyploid (M. peregrinus), and progenitor species (M. guttatus and M. luteus). We show that subgenome expression dominance occurs instantly following the hybridization of divergent genomes and significantly increases over generations. Additionally, CHH methylation levels are reduced in regions near genes and within TEs in the first-generation hybrid, intermediate in the resynthesized allopolyploid, and are repatterned differently between the dominant and recessive subgenomes in the natural allopolyploid. Subgenome differences in levels of TE methylation mirror the increase in expression bias observed over the generations following hybridization. These findings provide important insights into genomic and epigenomic shock that occurs following hybridization and polyploid events and may also contribute to uncovering the mechanistic basis of heterosis and subgenome dominance.


Asunto(s)
Genoma de Planta , Hibridación Genética , Mimulus/genética , Poliploidía , Metilación de ADN/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Filogenia , Especificidad de la Especie
7.
Mol Biol Evol ; 34(4): 969-979, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087768

RESUMEN

The origin of domesticated Asian rice (Oryza sativa) has been a contentious topic, with conflicting evidence for either single or multiple domestication of this key crop species. We examined the evolutionary history of domesticated rice by analyzing de novo assembled genomes from domesticated rice and its wild progenitors. Our results indicate multiple origins, where each domesticated rice subpopulation (japonica, indica, and aus) arose separately from progenitor O. rufipogon and/or O. nivara. Coalescence-based modeling of demographic parameters estimate that the first domesticated rice population to split off from O. rufipogon was O. sativa ssp. japonica, occurring at ∼13.1-24.1 ka, which is an order of magnitude older then the earliest archeological date of domestication. This date is consistent, however, with the expansion of O. rufipogon populations after the Last Glacial Maximum ∼18 ka and archeological evidence for early wild rice management in China. We also show that there is significant gene flow from japonica to both indica (∼17%) and aus (∼15%), which led to the transfer of domestication alleles from early-domesticated japonica to proto-indica and proto-aus populations. Our results provide support for a model in which different rice subspecies had separate origins, but that de novo domestication occurred only once, in O. sativa ssp. japonica, and introgressive hybridization from early japonica to proto-indica and proto-aus led to domesticated indica and aus rice.


Asunto(s)
Adaptación Biológica/genética , Flujo Génico/genética , Oryza/genética , Alelos , Evolución Biológica , Productos Agrícolas/genética , Domesticación , Evolución Molecular , Genes de Plantas/genética , Especiación Genética , Variación Genética/genética , Oryza/metabolismo , Filogenia , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos
8.
Proc Natl Acad Sci U S A ; 112(9): 2806-11, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691747

RESUMEN

Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000-300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that nonfunctionalization can receive a "head start" through a legacy of deleterious variants and differential expression originating in parental diploid populations.


Asunto(s)
Capsella/genética , Quimera/genética , Evolución Molecular , Genoma de Planta/fisiología , Poliploidía , Selección Genética , Estudio de Asociación del Genoma Completo , Mutación
9.
Proc Natl Acad Sci U S A ; 112(27): 8362-6, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100883

RESUMEN

Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits.


Asunto(s)
Brassicaceae/genética , Mariposas Diurnas/genética , Duplicación de Gen , Genoma de los Insectos/genética , Genoma de Planta/genética , Animales , Teorema de Bayes , Biodiversidad , Brassicaceae/clasificación , Brassicaceae/parasitología , Mariposas Diurnas/clasificación , Mariposas Diurnas/fisiología , Evolución Molecular , Expresión Génica , Genes de Insecto/genética , Genes de Plantas/genética , Variación Genética , Interacciones Huésped-Parásitos/genética , Proteínas de Insectos/genética , Filogenia , Proteínas de Plantas/genética , Especificidad de la Especie
10.
PLoS Genet ; 10(9): e1004622, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25255320

RESUMEN

The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5' and 3' untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.


Asunto(s)
Capsella/genética , Secuencia Conservada , Sistemas de Lectura Abierta , Selección Genética , Regiones no Traducidas , Evolución Molecular , Expresión Génica , Genoma de Planta , Estudio de Asociación del Genoma Completo , Polimorfismo Genético
11.
PLoS Biol ; 11(5): e1001560, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23690750

RESUMEN

Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.


Asunto(s)
Brassicaceae/genética , Evolución Molecular , Alelos , Secuencia de Aminoácidos , Brassicaceae/clasificación , Regulación de la Expresión Génica de las Plantas , Humanos , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Alineación de Secuencia
12.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948717

RESUMEN

Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants, especially transposable elements are likely to affect phenotypic variation but we need better methods in maize for detecting polymorphic structural variants and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic structural variants and then genotyped a large maize diversity panel for these variants using short-read sequencing data. We characterized variation of SVs within the panel and identified SV polymorphisms that are associated with life history traits and genotype-by-environment interactions. While most of the SVs associated with traits contained TEs, only one of the SV's boundaries clearly matched TE breakpoints indicative of a TE insertion, whereas the other polymorphisms were likely caused by deletions. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that this method did not identify variants that would have been missed in a SNP association study.

13.
Nat Commun ; 15(1): 2491, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509076

RESUMEN

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.


Asunto(s)
Fragaria , Genoma de Planta , Genoma de Planta/genética , Fragaria/genética , Cromatina/genética , Poliploidía , Mapeo Cromosómico
14.
Hortic Res ; 10(10): uhad169, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38025975

RESUMEN

Anthracnose fruit rot (AFR), caused by the fungal pathogen Colletotrichum fioriniae, is among the most destructive and widespread fruit disease of blueberry, impacting both yield and overall fruit quality. Blueberry cultivars have highly variable resistance against AFR. To date, this pathogen is largely controlled by applying various fungicides; thus, a more cost-effective and environmentally conscious solution for AFR is needed. Here we report three quantitative trait loci associated with AFR resistance in northern highbush blueberry (Vaccinium corymbosum). Candidate genes within these genomic regions are associated with the biosynthesis of flavonoids (e.g. anthocyanins) and resistance against pathogens. Furthermore, we examined gene expression changes in fruits following inoculation with Colletotrichum in a resistant cultivar, which revealed an enrichment of significantly differentially expressed genes associated with certain specialized metabolic pathways (e.g. flavonol biosynthesis) and pathogen resistance. Using non-targeted metabolite profiling, we identified a flavonol glycoside with properties consistent with a quercetin rhamnoside as a compound exhibiting significant abundance differences among the most resistant and susceptible individuals from the genetic mapping population. Further analysis revealed that this compound exhibits significant abundance differences among the most resistant and susceptible individuals when analyzed as two groups. However, individuals within each group displayed considerable overlapping variation in this compound, suggesting that its abundance may only be partially associated with resistance against C. fioriniae. These findings should serve as a powerful resource that will enable breeding programs to more easily develop new cultivars with superior resistance to AFR and as the basis of future research studies.

15.
Nat Commun ; 14(1): 8357, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102128

RESUMEN

Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed 'subgenome dominance' remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.


Asunto(s)
Carpas , Evolución Molecular , Animales , Poliploidía , Genoma/genética , Epigénesis Genética , Genoma de Planta
16.
Hum Mol Genet ; 18(4): 645-54, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19017725

RESUMEN

It is well established that nuclear architecture plays a key role in poising regions of the genome for transcription. This may be achieved using scaffold/matrix attachment regions (S/MARs) that establish loop domains. However, the relationship between changes in the physical structure of the genome as mediated by attachment to the nuclear scaffold/matrix and gene expression is not clearly understood. To define the role of S/MARs in organizing our genome and to resolve the often contradictory loci-specific studies, we have surveyed the S/MARs in HeLa S3 cells on human chromosomes 14-18 by array comparative genomic hybridization. Comparison of LIS (lithium 3,5-diiodosalicylate) extraction to identify SARs and 2 m NaCl extraction to identify MARs revealed that approximately one-half of the sites were in common. The results presented in this study suggest that SARs 5' of a gene are associated with transcript presence whereas MARs contained within a gene are associated with silenced genes. The varied functions of the S/MARs as revealed by the different extraction methods highlights their unique functional contribution.


Asunto(s)
Expresión Génica , Regiones de Fijación a la Matriz , Matriz Nuclear/genética , Mapeo Cromosómico , Cromosomas Humanos/química , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Células HeLa , Humanos , Matriz Nuclear/química , Matriz Nuclear/metabolismo , Unión Proteica
17.
Mol Cell Probes ; 24(1): 53-60, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19835949

RESUMEN

Networks of genes are typically generated from expression changes observed between control and test conditions. Nevertheless, within a single control state many genes show expression variance across biological replicates. These transcripts, typically termed unstable, are usually excluded from analyses because their behavior cannot be reconciled with biological constraints. Grouped as pairs of covariant genes they can however show a consistent response to the progression of a disease. We present a model of coherence arising from sets of covariant genes that was developed in-vitro then tested against a range of solid tumors. DGPMs, Decoherence Gene Pair Models, showed changes in network topology reflective of the metastatic transition. Across a range of solid tumor studies the model generalizes to reveal a richly connected topology of networks in healthy tissues that becomes sparser as the disease progresses reaching a minimum size in the advanced tumors with minim survivability.


Asunto(s)
Progresión de la Enfermedad , Perfilación de la Expresión Génica , Modelos Teóricos , Neoplasias/genética , Neoplasias/patología , Astrocitoma/genética , Astrocitoma/patología , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Glioblastoma/genética , Glioblastoma/patología , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
18.
Ecol Evol ; 10(4): 1889-1904, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128123

RESUMEN

Understanding the genomic signatures, genes, and traits underlying local adaptation of organisms to heterogeneous environments is of central importance to the field evolutionary biology. To identify loci underlying local adaptation, models that combine allelic and environmental variation while controlling for the effects of population structure have emerged as the method of choice. Despite being evaluated in simulation studies, there has not been a thorough investigation of empirical evidence supporting local adaptation across these alleles. To evaluate these methods, we use 875 Arabidopsis thaliana Eurasian accessions and two mixed models (GEMMA and LFMM) to identify candidate SNPs underlying local adaptation to climate. Subsequently, to assess evidence of local adaptation and function among significant SNPs, we examine allele frequency differentiation and recent selection across Eurasian populations, in addition to their distribution along quantitative trait loci (QTL) explaining fitness variation between Italy and Sweden populations and cis-regulatory/nonsynonymous sites showing significant selective constraint. Our results indicate that significant LFMM/GEMMA SNPs show low allele frequency differentiation and linkage disequilibrium across locally adapted Italy and Sweden populations, in addition to a poor association with fitness QTL peaks (highest logarithm of odds score). Furthermore, when examining derived allele frequencies across the Eurasian range, we find that these SNPs are enriched in low-frequency variants that show very large climatic differentiation but low levels of linkage disequilibrium. These results suggest that their enrichment along putative functional sites most likely represents deleterious variation that is independent of local adaptation. Among all the genomic signatures examined, only SNPs showing high absolute allele frequency differentiation (AFD) and linkage disequilibrium (LD) between Italy and Sweden populations showed a strong association with fitness QTL peaks and were enriched along selectively constrained cis-regulatory/nonsynonymous sites. Using these SNPs, we find strong evidence linking flowering time, freezing tolerance, and the abscisic-acid pathway to local adaptation.

19.
Nat Plants ; 6(2): 119-130, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32042156

RESUMEN

The extent to which sequence variation impacts plant fitness is poorly understood. High-resolution maps detailing the constraint acting on the genome, especially in regulatory sites, would be beneficial as functional annotation of noncoding sequences remains sparse. Here, we present a fitness consequence (fitCons) map for rice (Oryza sativa). We inferred fitCons scores (ρ) for 246 inferred genome classes derived from nine functional genomic and epigenomic datasets, including chromatin accessibility, messenger RNA/small RNA transcription, DNA methylation, histone modifications and engaged RNA polymerase activity. These were integrated with genome-wide polymorphism and divergence data from 1,477 rice accessions and 11 reference genome sequences in the Oryzeae. We found ρ to be multimodal, with ~9% of the rice genome falling into classes where more than half of the bases would probably have a fitness consequence if mutated. Around 2% of the rice genome showed evidence of weak negative selection, frequently at candidate regulatory sites, including a novel set of 1,000 potentially active enhancer elements. This fitCons map provides perspective on the evolutionary forces associated with genome diversity, aids in genome annotation and can guide crop breeding programs.


Asunto(s)
Aptitud Genética , Variación Genética , Genoma de Planta , Oryza/genética , Selección Genética , Mapeo Cromosómico , Mutación
20.
Front Plant Sci ; 10: 1002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447869

RESUMEN

Ribosome-inactivating proteins (RIPs) are RNA glycosidases thought to function in defense against pathogens. These enzymes remove purine bases from RNAs, including rRNA; the latter activity decreases protein synthesis in vitro, which is hypothesized to limit pathogen proliferation by causing host cell death. Pokeweed antiviral protein (PAP) is a RIP synthesized by the American pokeweed plant (Phytolacca americana). PAP inhibits virus infection when expressed in crop plants, yet little is known about the function of PAP in pokeweed due to a lack of genomic tools for this non-model species. In this work, we de novo assembled the pokeweed genome and annotated protein-coding genes. Sequencing comprised paired-end reads from a short-insert library of 83X coverage, and our draft assembly (N50 = 42.5 Kb) accounted for 74% of the measured pokeweed genome size of 1.3 Gb. We obtained 29,773 genes, 73% of which contained known protein domains, and identified several PAP isoforms. Within the gene models of each PAP isoform, a long 5' UTR intron was discovered, which was validated by RT-PCR and sequencing. Presence of the intron stimulated reporter gene expression in tobacco. To gain further understanding of PAP regulation, we complemented this genomic resource with expression profiles of pokeweed plants subjected to stress treatments [jasmonic acid (JA), salicylic acid, polyethylene glycol, and wounding]. Cluster analysis of the top differentially expressed genes indicated that some PAP isoforms shared expression patterns with genes involved in terpenoid biosynthesis, JA-mediated signaling, and metabolism of amino acids and carbohydrates. The newly sequenced promoters of all PAP isoforms contained cis-regulatory elements associated with diverse biotic and abiotic stresses. These elements mediated response to JA in tobacco, based on reporter constructs containing promoter truncations of PAP-I, the most abundant isoform. Taken together, this first genomic resource for the Phytolaccaceae plant family provides new insight into the regulation and function of PAP in pokeweed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA