Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(4): 899-911, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579290

RESUMEN

Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.


Asunto(s)
Corteza Cerebral/embriología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/embriología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neurogénesis , Células Piramidales/metabolismo , Procesamiento Postranscripcional del ARN , Especificidad de la Especie
2.
Nature ; 568(7752): 336-343, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30996318

RESUMEN

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.


Asunto(s)
Autopsia , Encéfalo/irrigación sanguínea , Encéfalo/citología , Circulación Cerebrovascular , Microcirculación , Porcinos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Caspasa 3/metabolismo , Supervivencia Celular , Arterias Cerebrales/fisiología , Modelos Animales de Enfermedad , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Inflamación/metabolismo , Inflamación/patología , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Perfusión , Daño por Reperfusión/prevención & control , Porcinos/sangre , Sinapsis/metabolismo , Sinapsis/patología , Factores de Tiempo , Vasodilatación
3.
Nature ; 539(7628): 242-247, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830782

RESUMEN

Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates.


Asunto(s)
Evolución Molecular , Proteínas Musculares/metabolismo , Neocórtex/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Animales , Secuencia de Bases , Huesos/metabolismo , Dendritas/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Humanos , Factores de Transcripción MEF2/metabolismo , Macaca mulatta , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Musculares/genética , Músculos/metabolismo , Neocórtex/citología , Neuronas/citología , Especificidad de Órganos , Especificidad de la Especie , Factores de Transcripción/genética
4.
Nature ; 508(7495): 199-206, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24695229

RESUMEN

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Asunto(s)
Encéfalo/metabolismo , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Transcriptoma , Anatomía Artística , Animales , Atlas como Asunto , Encéfalo/embriología , Secuencia Conservada/genética , Feto/citología , Feto/embriología , Redes Reguladoras de Genes/genética , Humanos , Ratones , Neocórtex/embriología , Neocórtex/metabolismo , Especificidad de la Especie
5.
Nature ; 478(7370): 483-9, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031440

RESUMEN

Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.


Asunto(s)
Envejecimiento/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Transcriptoma/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/embriología , Niño , Preescolar , Exones/genética , Femenino , Feto/metabolismo , Redes Reguladoras de Genes/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Control de Calidad , Sitios de Carácter Cuantitativo/genética , Caracteres Sexuales , Factores de Tiempo , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 111(13): 5036-41, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24707050

RESUMEN

The pattern of neurodegeneration in Alzheimer's disease (AD) is very distinctive: neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau selectively affect pyramidal neurons of the aging association cortex that interconnect extensively through glutamate synapses on dendritic spines. In contrast, primary sensory cortices have few NFTs, even in late-stage disease. Understanding this selective vulnerability, and why advancing age is such a high risk factor for the degenerative process, may help to reveal disease etiology and provide targets for intervention. Our study has revealed age-related increase in cAMP-dependent protein kinase (PKA) phosphorylation of tau at serine 214 (pS214-tau) in monkey dorsolateral prefrontal association cortex (dlPFC), which specifically targets spine synapses and the Ca(2+)-storing spine apparatus. This increase is mirrored by loss of phosphodiesterase 4A from the spine apparatus, consistent with increase in cAMP-Ca(2+) signaling in aging spines. Phosphorylated tau was not detected in primary visual cortex, similar to the pattern observed in AD. We also report electron microscopic evidence of previously unidentified vesicular trafficking of phosphorylated tau in normal association cortex--in axons in young dlPFC vs. in spines in aged dlPFC--consistent with the transneuronal lesion spread reported in genetic rodent models. pS214-Tau was not observed in normal aged mice, suggesting that it arises with the evolutionary expansion of corticocortical connections in primates, crossing the threshold into NFTs and degeneration in humans. Thus, the cAMP-Ca(2+) signaling mechanisms, needed for flexibly modulating network strength in young association cortex, confer vulnerability to degeneration when dysregulated with advancing age.


Asunto(s)
Envejecimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Proteínas tau/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Macaca mulatta , Ratones , Modelos Biológicos , Fosforilación , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
7.
J Neurosci ; 35(12): 4903-16, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25810521

RESUMEN

A sheet of choroid plexus epithelial cells extends into each cerebral ventricle and secretes signaling factors into the CSF. To evaluate whether differences in the CSF proteome across ventricles arise, in part, from regional differences in choroid plexus gene expression, we defined the transcriptome of lateral ventricle (telencephalic) versus fourth ventricle (hindbrain) choroid plexus. We find that positional identities of mouse, macaque, and human choroid plexi derive from gene expression domains that parallel their axial tissues of origin. We then show that molecular heterogeneity between telencephalic and hindbrain choroid plexi contributes to region-specific, age-dependent protein secretion in vitro. Transcriptome analysis of FACS-purified choroid plexus epithelial cells also predicts their cell-type-specific secretome. Spatial domains with distinct protein expression profiles were observed within each choroid plexus. We propose that regional differences between choroid plexi contribute to dynamic signaling gradients across the mammalian cerebroventricular system.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Cuarto Ventrículo/metabolismo , Ventrículos Laterales/metabolismo , Transcriptoma , Envejecimiento/metabolismo , Animales , Células Epiteliales/metabolismo , Femenino , Humanos , Macaca mulatta , Masculino , Ratones
8.
Methods ; 73: 27-37, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25448302

RESUMEN

During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Imagen de Difusión Tensora/métodos , Sustancia Blanca/embriología , Sustancia Blanca/crecimiento & desarrollo , Encéfalo/metabolismo , Niño , Preescolar , Femenino , Desarrollo Fetal/fisiología , Humanos , Masculino , Embarazo , Estadística como Asunto/métodos , Sustancia Blanca/metabolismo
9.
Cereb Cortex ; 23(11): 2620-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22933464

RESUMEN

As a prominent component of the human fetal brain, the structure of the cerebral wall is characterized by its laminar organization which includes the radial glial scaffold during fetal development. Diffusion tensor imaging (DTI) is useful to quantitatively delineate the microstructure of the developing brain and to clearly identify transient fetal layers in the cerebral wall. In our study, the spatio-temporal microstructural changes in the developing human fetal cerebral wall were quantitatively characterized with high-resolution DTI data of postmortem fetal brains from 13 to 21 gestational weeks. Eleven regions of interest for each layer in the entire cerebral wall were included. Distinctive time courses of microstructural changes were revealed for 11 regions of the neocortical plate. A histological analysis was also integrated to elucidate the relationship between DTI fractional anisotropy (FA) and histology. High FA values correlated with organized radial architecture in histological image. Expression levels of 17565 genes were quantified for each of 11 regions of human fetal neocortex from 13 to 21 gestational weeks to identify transcripts showing significant correlation with FA change. These correlations suggest that the heterogeneous and regionally specific microstructural changes of the human neocortex are related to different gene expression patterns.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/embriología , Feto/anatomía & histología , Corteza Cerebral/metabolismo , Imagen de Difusión Tensora , Feto/metabolismo , Perfilación de la Expresión Génica , Edad Gestacional , Humanos
10.
J Anat ; 217(4): 344-67, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20979585

RESUMEN

In this historical review, we trace the early history of research on the fetal subplate zone, subplate neurons and interstitial neurons in the white matter of the adult nervous system. We arrive at several general conclusions. First, a century of research clearly testifies that interstitial neurons, subplate neurons and the subplate zone were first observed and variously described in the human brain - or, in more general terms, in large brains of gyrencephalic mammals, characterized by an abundant white matter and slow and protracted prenatal and postnatal development. Secondly, the subplate zone cannot be meaningfully defined using a single criterion - be it a specific population of cells, fibres or a specific molecular or genetic marker. The subplate zone is a highly dynamic architectonic compartment and its size and cellular composition do not remain constant during development. Thirdly, it is important to make a clear distinction between the subplate zone and the subplate (and interstitial) neurons. The transient existence of the subplate zone (as a specific architectonic compartment of the fetal telencephalic wall) should not be equated with the putative transient existence of subplate neurons. It is clear that in rodents, and to an even greater extent in humans and monkeys, a significant number of subplate cells survive and remain functional throughout life.


Asunto(s)
Anatomía/historia , Corteza Cerebral/anatomía & histología , Neuronas/química , Adulto , Animales , Corteza Cerebral/embriología , Corteza Cerebral/ultraestructura , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Células Intersticiales de Cajal/fisiología , Malformaciones del Sistema Nervioso/embriología , Malformaciones del Sistema Nervioso/patología , Ratas , Médula Espinal/citología , Terminología como Asunto
11.
J Anat ; 217(4): 381-99, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20979586

RESUMEN

In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains.


Asunto(s)
Neuronas/patología , Telencéfalo/embriología , Telencéfalo/patología , Humanos , Inmunohistoquímica , Recién Nacido , Fenotipo , Telencéfalo/citología
12.
J Anat ; 217(4): 400-17, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20609031

RESUMEN

The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP-25 (SNAP-25-immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico-frontal pathways (external capsule, cerebral stalk-internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13-14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24-26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and 'waiting' compartments during the path-finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter.


Asunto(s)
Axones/fisiología , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Fetal/fisiología , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Acetilcolinesterasa/análisis , Axones/metabolismo , Axones/ultraestructura , Corteza Cerebral/embriología , Corteza Cerebral/fisiología , Imagen de Difusión Tensora , Histocitoquímica , Humanos , Vías Nerviosas/fisiología , Proteínas de Neurofilamentos/análisis , Proteína 25 Asociada a Sinaptosomas/análisis , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo
13.
Claustrum ; 3(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-31656555

RESUMEN

BACKGROUND: The claustrum (CLA) has been discussed as central to integrated conscious percepts, although recent evidence has emphasized a role in detecting sensory novelty or in amplifying correlated cortical inputs. OBJECTIVE: We report that many neurons in the macaque CLA are ensheathed in perineuronal nets (PNNs), which contribute to synaptic stability and enhance neuronal excitability, among other properties. DESIGN: We visualized PNNs by wisteria floribunda agglutinin (WFA) immunohistochemistry, and quantified these in comparison these to parvalbumin+ (PV) subsets and total neurons. RESULTS: PNNs ensheath about 11% of the total neurons. These are a range of large, medium, and small neurons, likely corresponding to PV+ and/or other inhibitory interneurons. The PNNs were themselves heterogeneous, consisting of lattice-like, weakly labeled, and diffuse subtypes, and showed some regional preference for the medial CLA. CONCLUSION: The abundant neuronal labeling by PNNs in the CLA suggests an important and nuanced role for inhibition, consistent with recent physiological studies of claustrocortical circuitry. For comparison, diversified inhibition in the reticular nucleus of the thalamus (a pan-inhibitory nucleus, with extensive cortical input) exerts a spectrum of control at different local and global spatiotemporal scales. Further investigation of PNN+ neurons in the macaque CLA offers a potentially important new approach to CLA function, relevant to the human brain both in normal and diseased conditions.

14.
Science ; 359(6375): 550-555, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217587

RESUMEN

Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.


Asunto(s)
Encéfalo/embriología , Gastrulación/genética , Mosaicismo , Mutagénesis , Tasa de Mutación , Neurogénesis/genética , Linaje de la Célula/genética , Genoma Humano , Humanos , Mutación , Neoplasias/genética , Neuronas , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual
15.
Science ; 362(6420)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30545854

RESUMEN

To broaden our understanding of human neurodevelopment, we profiled transcriptomic and epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type-specific dynamics. We observed a global transcriptomic cup-shaped pattern, characterized by a late fetal transition associated with sharply decreased regional differences and changes in cellular composition and maturation, followed by a reversal in childhood-adolescence, and accompanied by epigenomic reorganizations. Analysis of gene coexpression modules revealed relationships with epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to brain-based traits and neuropsychiatric disorders (including MEF2C, SATB2, SOX5, TCF4, and TSHZ3) converged in a small number of modules and distinct cell types, revealing insights into neurodevelopment and the genomic basis of neuropsychiatric risks.


Asunto(s)
Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica , Trastornos Mentales/genética , Enfermedades del Sistema Nervioso/genética , Neurogénesis/genética , Encéfalo/crecimiento & desarrollo , Epigénesis Genética , Epigenómica , Redes Reguladoras de Genes , Humanos , Análisis de la Célula Individual , Transcriptoma
16.
Brain Struct Funct ; 222(9): 4131-4147, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28634624

RESUMEN

Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador , Macaca mulatta/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Animales , Anisotropía , Autopsia , Encéfalo/fisiología , Femenino , Imagen por Resonancia Magnética , Masculino
17.
Nat Neurosci ; 20(12): 1787-1795, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29184206

RESUMEN

Detailed observations of transcriptional, translational and post-translational events in the human brain are essential to improving our understanding of its development, function and vulnerability to disease. Here, we exploited label-free quantitative tandem mass-spectrometry to create an in-depth proteomic survey of regions of the postnatal human brain, ranging in age from early infancy to adulthood. Integration of protein data with existing matched whole-transcriptome sequencing (RNA-seq) from the BrainSpan project revealed varied patterns of protein-RNA relationships, with generally increased magnitudes of protein abundance differences between brain regions compared to RNA. Many of the differences amplified in protein data were reflective of cytoarchitectural and functional variation between brain regions. Comparing structurally similar cortical regions revealed significant differences in the abundances of receptor-associated and resident plasma membrane proteins that were not readily observed in the RNA expression data.


Asunto(s)
Química Encefálica/genética , Proteómica/métodos , Adolescente , Adulto , Envejecimiento , Animales , Animales Recién Nacidos , Niño , Preescolar , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Ratones , Biblioteca de Péptidos , ARN/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem , Transcriptoma , Adulto Joven
18.
Science ; 358(6366): 1027-1032, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29170230

RESUMEN

To better understand the molecular and cellular differences in brain organization between human and nonhuman primates, we performed transcriptome sequencing of 16 regions of adult human, chimpanzee, and macaque brains. Integration with human single-cell transcriptomic data revealed global, regional, and cell-type-specific species expression differences in genes representing distinct functional categories. We validated and further characterized the human specificity of genes enriched in distinct cell types through histological and functional analyses, including rare subpallial-derived interneurons expressing dopamine biosynthesis genes enriched in the human striatum and absent in the nonhuman African ape neocortex. Our integrated analysis of the generated data revealed diverse molecular and cellular features of the phylogenetic reorganization of the human brain across multiple levels, with relevance for brain function and disease.


Asunto(s)
Macaca/genética , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Vías Nerviosas/metabolismo , Pan troglodytes/genética , Transcriptoma , Animales , Perfilación de la Expresión Génica , Humanos , Interneuronas/metabolismo , Filogenia , Especificidad de la Especie
19.
Biol Psychiatry ; 79(5): 372-382, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25199956

RESUMEN

BACKGROUND: Genome-wide association studies have not revealed any risk-conferring common genetic variants in Tourette syndrome (TS), requiring the adoption of alternative approaches to investigate the pathophysiology of this disorder. METHODS: We obtained the basal ganglia transcriptome by RNA sequencing in the caudate and putamen of nine TS and nine matched normal control subjects. RESULTS: We found 309 downregulated and 822 upregulated genes in the caudate and putamen (striatum) of TS individuals. Using data-driven gene network analysis, we identified 17 gene coexpression modules associated with TS. The top-scoring downregulated module in TS was enriched in striatal interneuron transcripts, which was confirmed by decreased numbers of cholinergic and gamma-aminobutyric acidergic interneurons by immunohistochemistry in the same regions. The top-scoring upregulated module was enriched in immune-related genes, consistent with activation of microglia in patients' striatum. Genes implicated by copy number variants in TS were enriched in the interneuron module, as well as in a protocadherin module. Module clustering revealed that the interneuron module was correlated with a neuronal metabolism module. CONCLUSIONS: Convergence of differential expression, network analyses, and module clustering, together with copy number variants implicated in TS, strongly implicates disrupted interneuron signaling in the pathophysiology of severe TS and suggests that metabolic alterations may be linked to their death or dysfunction.


Asunto(s)
Interneuronas/metabolismo , Putamen/metabolismo , Síndrome de Tourette/genética , Transcriptoma , Acetilcolina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Variaciones en el Número de Copia de ADN , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ARN , Ácido gamma-Aminobutírico/metabolismo
20.
Front Neuroanat ; 10: 11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941612

RESUMEN

The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13-40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the transformation of embryonic cortical columns, dendritic differentiation, and ingrowth of axons. These results provide a quantitative description of transient human fetal brain compartments observable with MRI. Moreover, they will improve understanding of structural-functional relationships during brain development, will enable correlation between in vitro/in vivo imaging and fine structural histological studies, and will serve as a reference for study of perinatal brain injuries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA