Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 106(2): 612-622, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34569826

RESUMEN

Mango malformation disease (MMD) caused by Fusarium spp. is an important limiting factor in most production areas worldwide. Fusarium mexicanum and F. pseudocircinatum have been reported as causing MMD in Mexico. These two pathogens also cause a similar disease in Swietenia macrophylla (big-leaf mahogany malformation disease) in central western Mexico, and F. pseudocircinatum was recently reported as causing malformation disease in Tabebuia rosea (rosy trumpet) in the same region. These studies suggest that additional plant species, including weeds, might be hosts of these pathogens. The role that weed hosts might have in the disease cycle is unknown. The objectives of this work were to recover Fusarium isolates from understory vegetation in mango orchards with MMD, identify the Fusarium isolates through DNA sequence data, and determine whether F. mexicanum is capable of inducing disease in the weedy legume Senna uniflora (oneleaf senna). Additional objectives in this work were to compare Fusarium isolates recovered from weeds and mango trees in the same orchards by characterizing their phylogenetic relationships, assessing in vitro production of mycotoxins, and identifying their mating type idiomorph. A total of 59 Fusarium isolates from five species complexes were recovered from apical and lateral buds from four weed species. Two of the species within the F. fujikuroi species complex are known to cause MMD in Mexico. Trichothecene production was detected in five isolates, including F. sulawense and F. irregulare in the F. incarnatum-equiseti species complex and F. boothii in the F. sambucinum species complex. Both mating types were present among mango and weed isolates. This is the first report of herbaceous hosts harboring Fusarium species that cause mango malformation in Mexico. The information provided should prove valuable for further study of the epidemiological role of weeds in MMD and help manage the disease.


Asunto(s)
Fusarium , Enfermedades de las Plantas/microbiología , Malezas/microbiología , Árboles/microbiología , Fusarium/genética , México , Filogenia
2.
Plant Dis ; 105(10): 2822-2829, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33904328

RESUMEN

Tabebuia rosea (rosy trumpet) is an economically important neotropical tree in Mexico that is highly valued for the quality of its wood, which is used for furniture, crafts, and packing, and for its use as an ornamental and shade tree in parks and gardens. During surveys conducted in the lower Balsas River Basin region in the states of Guerrero and Michoacán, symptoms of floral malformation were detected in T. rosea trees. The main objectives of this study were to describe this new disease, to determine its causal agent, and to identify it using DNA sequence data. A second set of objectives was to analyze the phylogenetic relationship of the causal agent to Fusarium spp. associated with Swietenia macrophylla trees with malformation surveyed in the same region and to compare mycotoxin production and the mating type idiomorphs of fusaria recovered from T. rosea and S. macrophylla. Tabebuia rosea showed malformed inflorescences with multiple tightly curled shoots and shortened internodes. A total of 31 Fusarium isolates recovered from symptomatic T. rosea (n = 20) and S. macrophylla (n = 11) trees were identified by molecular analysis as Fusarium pseudocircinatum. Pathogenicity tests showed that isolates of F. pseudocircinatum recovered from T. rosea induced malformation in inoculated T. rosea seedlings. Eighteen F. pseudocircinatum isolates were tested for their ability to produce mycotoxins and other secondary metabolites. Moniliformin, fusaric acid, bikaverin, beauvericin, aurofusarin. and 8-O-methylbostrycoidin were produced by at least one strain of the 18 isolates tested. A multiplex PCR assay for mating type idiomorph revealed that 22 F. pseudocircinatum isolates were MAT1-1 and that 9 were MAT1-2. Here, we report a new disease of T. rosea in Mexico caused by F. pseudocircinatum.


Asunto(s)
Fusarium , Enfermedades de las Plantas/microbiología , Tabebuia , Fusarium/genética , Fusarium/patogenicidad , México , Filogenia , Tabebuia/microbiología
3.
Microb Ecol ; 76(4): 925-940, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29675704

RESUMEN

Nutritional mutualisms that ambrosia beetles have with fungi are poorly understood. Although these interactions were initially thought to be specific associations with a primary symbiont, there is increasing evidence that some of these fungi are associated with, and move among, multiple beetle partners. We examined culturable fungi recovered from mycangia of ambrosia beetles associated with trees of Persea humilis (silk bay, one site) and P. americana (avocado, six commercial orchards) that were affected by laurel wilt, an invasive disease caused by a symbiont, Raffaelea lauricola, of an Asian ambrosia beetle, Xyleborus glabratus. Fungi were isolated from 20 adult females of X. glabratus from silk bay and 70 each of Xyleborus affinis, Xyleborus bispinatus, Xyleborus volvulus, Xyleborinus saxesenii, and Xylosandrus crassiusculus from avocado. With partial sequences of ribosomal (LSU and SSU) and nuclear (ß-tubulin) genes, one to several operational taxonomic units (OTUs) of fungi were identified in assayed individuals. Distinct populations of fungi were recovered from each of the examined beetle species. Raffaelea lauricola was present in all beetles except X. saxesenii and X. crassiusculus, and Raffaelea spp. predominated in Xyleborus spp. Raffaelea arxii, R. subalba, and R. subfusca were present in more than a single species of Xyleborus, and R. arxii was the most abundant symbiont in both X. affinis and X. volvulus. Raffaelea aguacate was detected for the first time in an ambrosia beetle (X. bispinatus). Yeasts (Ascomycota, Saccharomycotina) were found consistently in the mycangia of the examined beetles, and distinct, putatively co-adapted populations of these fungi were associated with each beetle species. Greater understandings are needed for how mycangia in ambrosia beetles interact with fungi, including yeasts which play currently underresearched roles in these insects.


Asunto(s)
Ophiostomatales/fisiología , Persea/microbiología , Enfermedades de las Plantas/microbiología , Simbiosis , Gorgojos/microbiología , Animales , Femenino , Florida , Gorgojos/clasificación
4.
Mycologia ; 108(4): 657-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27055571

RESUMEN

Factors that influence fungal communities in ambrosia beetle mycangia are poorly understood. The beetle that is responsible for spreading laurel wilt in SE USA, Xyleborus glabratrus, was examined at three sites along a 500 km N-S transect in Florida, each populated by host trees in the Lauraceae. Fungal phenotypes were quantified in mycangia of individual females that were collected from a site in Miami-Dade County (MDC), 25.8N, with swamp bay (Persea palustris), one in Highlands County (HC), 27.9N, with silkbay (P. humulis) and swamp bay and another in Alachua County (AC), 29.8N, with redbay (P. borbonia). Based on combined LSU, SSU and beta-tubulin datasets the most prominent phenotypes were Raffaelea lauricola (cause of laurel wilt), R. subalba, R. subfusca, R. fusca, R. arxii and an undescribed Raffaelea sp. Mean numbers of colony forming units (CFUs) of R. lauricola varied by location (P < 0.003), and a multivariate analysis, which accounted for the presence and relative abundance of fungal species, indicated that there were significant variations in mycangial communities among the sites; thus climate and vegetation might have affected fungal diversity and the relative abundance of these fungi in the mycangia of X. glabratus Statistically it was unlikely that any of the species influenced the presence and prevalence of another species.


Asunto(s)
Biodiversidad , Hongos/clasificación , Hongos/aislamiento & purificación , Gorgojos/microbiología , Animales , Análisis por Conglomerados , Recuento de Colonia Microbiana , ADN de Hongos/química , ADN de Hongos/genética , ADN de Plantas/química , ADN de Plantas/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Florida , Hongos/genética , Lauraceae/parasitología , Filogenia , ARN Ribosómico/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Tubulina (Proteína)/genética
5.
Fungal Genet Biol ; 82: 277-90, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25445310

RESUMEN

The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production. To assess species limits and to date the evolutionary diversification of the mutualists, we reconstructed the evolutionary histories of key representatives of the Fusarium and Euwallacea clades using maximum parsimony and maximum likelihood methods. Twelve species-level lineages, termed AF 1-12, were identified within the monophyletic AFC and seven among the Fusarium-farming Euwallacea. Bayesian diversification-time estimates placed the origin of the Euwallacea-Fusarium mutualism near the Oligocene-Miocene boundary ∼19-24 Mya. Most Euwallacea spp. appear to be associated with one species of Fusarium, but two species farmed two closely related fusaria. Euwallacea sp. #2 in Miami-Dade County, Florida cultivated Fusarium spp. AF-6 and AF-8 on avocado, and Euwallacea sp. #4 farmed Fusarium ambrosium AF-1 and Fusarium sp. AF-11 on Chinese tea in Sri Lanka. Cophylogenetic analyses indicated that the Euwallacea and Fusarium phylogenies were largely incongruent, apparently due to the beetles switching fusarial symbionts (i.e., host shifts) at least five times during the evolution of this mutualism. Three cospeciation events between Euwallacea and their AFC symbionts were detected, but randomization tests failed to reject the null hypothesis that the putative parallel cladogenesis is a stochastic pattern. Lastly, two collections of Euwallacea sp. #2 from Miami-Dade County, Florida shared an identical cytochrome oxidase subunit 1 (CO1) allele with Euwallacea validus, suggesting introgressive hybridization between these species and/or pseudogenous nature of this marker. Results of the present study highlight the importance of understanding the potential for and frequency of host-switching between Euwallacea and members of the AFC, and that these shifts may bring together more aggressive and virulent combinations of these invasive mutualists.


Asunto(s)
Escarabajos/genética , Escarabajos/microbiología , Fusarium/clasificación , Fusarium/genética , Filogenia , Simbiosis , Animales , Escarabajos/clasificación , Evolución Molecular , Femenino , Genes Fúngicos , Genes de Insecto , Variación Genética
6.
Phytopathology ; 105(12): 1512-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26057187

RESUMEN

Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.


Asunto(s)
Fusarium/fisiología , Musa/microbiología , Agricultura , Interacciones Huésped-Patógeno , Enfermedades de las Plantas
7.
Phytopathology ; 105(4): 433-40, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25496301

RESUMEN

Laurel wilt, caused by Raffaelea lauricola, is a destructive disease of avocado (Persea americana). The susceptibility of different cultivars and races was examined previously but more information is needed on how this host responds to the disease. In the present study, net CO2 assimilation (A), stomatal conductance of H2O (gs), transpiration (E), water use efficiency (WUE), and xylem sap flow rates were assessed in cultivars that differed in susceptibility. After artificial inoculation with R. lauricola, there was a close relationship between symptom development and reductions in A, gs, E, WUE, and mean daily sap flow in the most susceptible cultivar, 'Russell', and significantly greater disease and lower A, gs, E, WUE, and sap flow rates were usually detected after 15 days compared with the more tolerant 'Brogdon' and 'Marcus Pumpkin'. Significant differences in preinoculation A, gs, E, and WUE were generally not detected among the cultivars but preinoculation sap flow rates were greater in Russell than in Brogdon and Marcus Pumpkin. Preinoculation sap flow rates and symptom severity for individual trees were correlated at the end of an experiment (r=0.46), indicating that a plant's susceptibility to laurel wilt was related to its ability to conduct water. The potential management of this disease with clonal rootstocks that reduce sap flow rates is discussed.


Asunto(s)
Ophiostomatales/fisiología , Persea/fisiología , Enfermedades de las Plantas/microbiología , Transpiración de Plantas/fisiología , Dióxido de Carbono/metabolismo , Luz , Persea/microbiología , Persea/efectos de la radiación , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/microbiología , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Estaciones del Año , Especificidad de la Especie , Agua/metabolismo , Xilema/microbiología , Xilema/fisiología , Xilema/efectos de la radiación
8.
Plant Dis ; 98(11): 1456-1466, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30699791

RESUMEN

Mango (Mangifera indica) is regarded as the king of fruits in India, where it has been cultivated for at least 4,000 years and has great cultural and religious significance. Many Indian mango cultivars originated in the fifteenth century when the best selections of mango seedlings were propagated by grafting and planted in large orchards, in some cases numbering 100,000 trees. With the arrival of voyagers to India from Europe, mango was soon established throughout the tropics and subtropics. Mango malformation disease (MMD) is one of the most important and destructive diseases of this crop. It affects inflorescences and vegetative portions of the plant. Although trees are not killed, the vegetative phase of the disease impedes canopy development and the floral phase reduces fruit yield dramatically; substantial economic losses can occur since malformed inflorescences do not bear fruit. Significant advances have been made in understanding the etiology of MMD, which is caused by more than one agent. However, until recently little progress had been made on the epidemiology of this disease. The results that are discussed in this article are only for MMD caused by F. mangiferae.

9.
Plant Dis ; 98(3): 379-383, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30708438

RESUMEN

Laurel wilt, caused by the fungus Raffaelea lauricola, is an exotic disease that affects members of the Lauraceae plant family in the southeastern United States. The disease is spreading rapidly in native forests and is now found in commercial avocado groves in south Florida, where an accurate diagnostic method would improve disease management. A polymerase chain reaction (PCR) method based on amplifying the ribosomal small-subunit DNA, with a detection limit of 0.0001 ng, was found to be suitable for some quantitative PCR applications; however, it was not taxon specific. Genomic sequencing of R. lauricola was used to identify and develop primers to amplify two taxon-specific simple-sequence repeat (SSR) loci, which did not amplify from related taxa or host DNA. The new SSR loci PCR assay has a detection limit of 0.1 ng of R. lauricola DNA, is compatible with traditional and real-time PCR, was tested in four labs to confirm consistency, and reduces diagnostic time from 1 week to 1 day. Our work illustrates pitfalls to designing taxon-specific assays for new pathogens and that undescribed fungi can limit specificity.

10.
Fungal Genet Biol ; 56: 147-57, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608321

RESUMEN

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ∼21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization.


Asunto(s)
Fusarium/clasificación , Fusarium/aislamiento & purificación , Variación Genética , Persea/parasitología , Simbiosis , Gorgojos/microbiología , Estructuras Animales/microbiología , Animales , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Fusarium/genética , Fusarium/fisiología , Genes de ARNr , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/genética , Filogenia , ARN Polimerasa II/genética , ARN de Hongos/genética , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Gorgojos/crecimiento & desarrollo
11.
Phytopathology ; 103(5): 400-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23379853

RESUMEN

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Asunto(s)
Fusarium/clasificación , Plantas/microbiología , Fusarium/genética , Filogenia , Enfermedades de las Plantas/microbiología
12.
Plant Dis ; 97(7): 856-872, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30722573

RESUMEN

Diseases associated with ambrosia and bark beetles comprise some of the most significant problems that have emerged on trees in the last century. They are caused by fungi in the Ophiostomatales, Microascales, and Hypocreales, and have vectors in the Scolytinae (ambrosia and bark beetles) and Platypodinae (ambrosia beetles) subfamilies of the Curculionidae (Coleoptera). Some of these problems, such as Dutch elm disease, have a long history, have been extensively researched, and are fairly well understood. In contrast, other similar diseases developed recently and are poorly or partially understood. The emergence and unexpected importance of these tree diseases are discussed in this article. An underlying factor in most of these interactions is the absence of a coevolved history between the so-called "naïve" or "new encounter" host trees and the pathogens and/or beetles. For the ambrosia beetles, these interactions are associated with susceptibility to what are typically benign fungi and atypical relationships with healthy trees (ambrosia beetles favor trees that are dead or stressed). Interestingly, the pathogens for both the ambrosia and bark beetle-associated diseases often have symbiotic relationships with the insects that are not based on phytopathogenicity. Some of the most alarming and damaging of these diseases are considered "black swan events". Black swan developed as a metaphor for a supposed impossibility that is contradicted with new information. Today, Black Swan Theory focuses on unexpected events of large magnitude and consequence.

14.
Plant Dis ; 96(11): 1683-1689, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30727463

RESUMEN

Laurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually similar to those caused by freeze damage (leaf necrosis). In this work, we performed classification studies with visible-near infrared spectra of asymptomatic and symptomatic leaves from infected plants, as well as leaves from freeze-damaged and healthy plants, both of which were non-infected. The principal component scores computed from principal component analysis were used as input features in four classifiers: linear discriminant analysis, quadratic discriminant analysis (QDA), Naïve-Bayes classifier, and bagged decision trees (BDT). Among the classifiers, QDA and BDT resulted in classification accuracies of higher than 94% when classifying asymptomatic leaves from infected plants. All of the classifiers were able to discriminate symptomatic-infected leaves from freeze-damaged leaves. However, the false negatives mainly resulted from asymptomatic-infected leaves being classified as healthy. Analyses of average vegetation indices of freeze-damaged, healthy (non-infected), asymptomatic-infected, and symptomatic-infected leaves indicated that the normalized difference vegetation index and the simple ratio index were statistically different.

15.
J Econ Entomol ; 105(2): 659-69, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22606839

RESUMEN

Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-borer that vectors the fungal agent (Raffaelea lauricola) responsible for laurel wilt. Laurel wilt has had severe impact on forest ecosystems in the southeastern United States, killing a large proportion of native Persea trees, particularly redbay (P. borbonia) and swampbay (P. palustris), and currently poses an economic threat to avocado (P. americana) in Florida. To control the spread of this lethal disease, effective attractants are needed for early detection of the vector. Two 12-wk field tests were conducted in Florida to evaluate efficacy and longevity of manuka and phoebe oil lures, and to relate captures of X. glabratus to release rates of putative sesquiterpene attractants. Two trap types were also evaluated, Lindgren funnel traps and sticky panel traps. To document lure emissions over time, a separate set of lures was aged outdoors for 12 wk and sampled periodically to quantify volatile sesquiterpenes using super-Q adsorbant and gas chromatography-mass spectroscopy analysis. Phoebe lures captured significantly more X. glabratus than manuka lures, and sticky traps captured more beetles than funnel traps. Phoebe lures captured X. glabratus for 10-12 wk, but field life of manuka lures was 2-3 wk. Emissions of alpha-copaene, alpha-humulene, and cadinene were consistently higher from phoebe lures, particularly during the 2-3 wk window when manuka lures lost efficacy, suggesting that these sesquiterpenes are primary kairomones used by host-seeking females. Results indicate that the current monitoring system is suboptimal for early detection of X. glabratus because of rapid depletion of sesquiterpenes from manuka lures.


Asunto(s)
Control de Insectos/métodos , Leptospermum/química , Aceites Volátiles/farmacología , Feromonas/farmacología , Sesquiterpenos/farmacología , Terpenos/farmacología , Gorgojos/efectos de los fármacos , Animales , Femenino , Florida , Aceites Volátiles/análisis , Sesquiterpenos/análisis , Terpenos/análisis , Factores de Tiempo
16.
Plant Dis ; 95(8): 977-982, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30732110

RESUMEN

Laurel wilt threatens commercial and residential production of avocado (Persea americana) in Florida. Laurel wilt on redbay (P. borbonia) was controlled previously with macroinfusions (injections) of Alamo, an injectable formulation of propiconazole. To determine whether Alamo macroinfusion would be cost effective in commercial avocado production, economic analyses were conducted for various macroinfusion scenarios and a standardized production situation in southern Florida. Under prevailing conditions, macroinfusion was not cost effective. In the interest of identifying alternative means to manage the disease, other fungicides and application measures were evaluated. In all, 20 fungicides in 15 chemical groups and 10 fungicide groups were examined in vitro. In vitro inhibition of the radial growth of the pathogen Raffaelea lauricola was determined on fungicide-amended malt extract agar; demethylation inhibitors (DMIs; fenarimol, myclobutanil, propiconazole, prothioconazole, triadimenol, triadimefon, and triticonazole), quinone outside inhibitors (azoxystrobin, pyraclostrobin, and fluoxastrobin), and a quinone inside inhibitor (fluazinam) had the greatest impact on radial growth (the concentration at which growth was reduced by 50% was ≥0.1 µg ml-1). In greenhouse studies, the most inhibitory products in vitro, plus thiabendazole and two products that were not tested in vitro, flutriafol and a potassium salts mixture of phosphorus acid, were tested for disease suppression on artificially inoculated, potted 'Simmonds,' a susceptible avocado cultivar. In general, soil drench applications of the above DMIs and thiabendazole but not azoxystrobin, pyraclostrobin, fluazinam, or the phosphorus acid salt provided significant control of disease (P < 0.05). Topical branch or trunk applications of propiconazole, and triadimenol in 2% Pentrabark, a bark-penetrating surfactant, were also effective at lower rates than were used in drench applications. Comparable levels of disease suppression were achieved when propiconazole was applied at 11% of the rates that were used in soil drenches. Although topical fungicide applications in bark-penetrating surfactants would be a less expensive practice than macroinfusion, moving sufficient concentrations of propiconazole or other fungicides into host xylem will be difficult in trees that are larger than the potted plants that were tested in these trials. Ongoing work examines means by which this goal might be met on fruit-bearing trees in the field.

17.
Tree Physiol ; 41(6): 1004-1018, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33079164

RESUMEN

Laurel wilt, a lethal vascular wilt disease caused by the fungus Raffaelea lauricola, affects several tree species in the Lauraceae, including three Persea species. The susceptibility to laurel wilt of two forest tree species native to the southern USA, Persea borbonia and Persea palustris, [(Raf.) Sarg.] and avocado, Persea americana (Mill.) cv Waldin, was examined and related to tree physiology and xylem anatomy. Net CO2 assimilation (A), stomatal conductance (gs), leaf chlorophyll index (LCI), leaf chlorophyll fluorescence (Fv/Fm), xylem sap flow, theoretical stem hydraulic conductivity (Kh) and xylem vessel anatomy were assessed in trees of each species that were inoculated with R. lauricola and in control trees. Laurel wilt caused a reduction in A, gs, LCI, Fv/Fm and blockage of xylem vessels by tyloses formation that negatively impacted Kh and sap flow in all Persea species. However, disease susceptibility as indicated by canopy wilting and sapwood discoloration was less pronounced in P. americana cv Waldin than in the two forest species. Xylem vessel diameter was significantly smaller in P. borbonia and P. palustris than in P. americana cv Waldin. Differences in laurel wilt susceptibility among species appear to be influenced by physiological and anatomical tree responses.


Asunto(s)
Ophiostomatales , Persea , Fotosíntesis , Xilema
18.
Mycologia ; 113(5): 1089-1109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34343445

RESUMEN

The Ambrosia Fusarium Clade (AFC) is a monophyletic lineage within clade 3 of the Fusarium solani species complex (FSSC) that currently comprises 19 genealogically exclusive species. These fungi are known or predicted to be farmed by adult female Euwallacea ambrosia beetles as a nutritional mutualism (Coleoptera: Scolytinae; Xyleborini). To date, only eight of the 19 AFC species have been described formally with Latin binomials. We describe three AFC species, previously known as AF-8, AF-10, and AF-11, based on molecular phylogenetic analysis of multilocus DNA sequence data and comparative morphological/phenotypic studies. Fusarium duplospermum (AF-8) farmed by E. perbrevis on avocado in Florida, USA, is distinguished by forming two morphologically different types of multiseptate conidia and brownish orange colonies on potato dextrose agar (PDA). Fusarium drepaniforme (AF-10), isolated from an unknown woody host in Singapore and deposited as Herb IMI 351954 in the Royal Botanic Gardens, Kew, UK, under the name F. bugnicourtii, is diagnosed by frequent production of multiseptate sickle-shaped conidia. Fusarium papillatum (AF-11), isolated from mycangia of E. perbrevis infesting tea in Kandy, Sri Lanka, forms multiseptate clavate conidia that possess a papillate apical cell protruding toward the ventral side. Lastly, we prepared an augmented description of F. kuroshium (AF-12), previously isolated from the heads or galleries of E. kuroshio in a California sycamore tree, El Cajon, California, USA, and recently validated nomenclaturally as Fusarium. Conidia formed by F. kuroshium vary widely in size and shape, suggesting a close morphological relationship with F. floridanum, compared with all other AFC species. Maximum likelihood and maximum parsimony analyses of a multilocus data set resolve these three novel AFC species, and F. kuroshium, as phylogenetically distinct based on genealogical concordance. Given the promiscuous nature of several Euwallacea species, and the overlapping geographic range of several AFC species and Euwallacea ambrosia beetles, the potential for symbiont switching among sympatric species is discussed.


Asunto(s)
Delfines , Fusarium , Ambrosia , Animales , Fusarium/genética , Filogenia , Esporas Fúngicas
19.
Phytopathology ; 100(11): 1176-84, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20932166

RESUMEN

The primary objective of this study was to characterize Fusarium spp. associated with the economically devastating mango malformation disease (MMD) in Mexico. In all, 142 Fusarium strains were isolated from symptomatic mango inflorescences and vegetative tissues in eight geographically diverse Mexican states from 2002 through 2007. Initially, all the Mexican isolates were screened for genetic diversity using appolymerase chain reaction and random amplified polymorphic DNA markers and were grouped into seven distinct genotypes. Based on results of these analyses, evolutionary relationships and species limits of the genetically diverse MMD-associated Fusarium spp. were investigated using multilocus DNA sequence data and phylogenetic species recognition. Maximum parsimony analyses of a five-locus data set comprising 5.8 kb of aligned DNA sequence data indicated that at least nine phylogenetically distinct Fusarium spp. within the Gibberella fujikuroi species complex are associated with MMD, including one species within the African clade (Fusarium pseudocircinatum), two species within the Asian clade (F. mangiferae and F. proliferatum), and at least six species within the American clade (F. sterilihyphosum and five undescribed Fusarium spp.). Molecular phylogenetic analyses indicate that a novel genealogically exclusive lineage within the American clade was the predominant MMD associate in Mexico. This new Fusarium sp. caused MMD and could be distinguished from all other known species morphologically by the production of mostly sterile, coiled hyphae which are typically associated with sporodochial conidiophores together with unbranched or sparsely branched aerial conidiophores. Koch's postulates were completed for isolates of the new species on nucellar seedlings of mango cv. Ataulfo. This pathogen is formally described herein as F. mexicanum.


Asunto(s)
Fusarium/clasificación , Fusarium/aislamiento & purificación , Mangifera/microbiología , Enfermedades de las Plantas/microbiología , Fusarium/genética , México , Filogenia
20.
Plant Dis ; 94(5): 621-627, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-30754469

RESUMEN

Banana fruit of the Cavendish subgroup, Musa acuminata, are significant international commodities. Recently, a transnational company attempted to develop single fruit (fingers) as a product in the United States. In the summer of 2007, an unknown problem developed (hereafter, "fuzzy pedicel"), wherein mats of fluffy gray to white mycelial mats covered large portions of the pedicel surface of fruit when they were packed in gas-permeable containers. Fungi from two genera sporulated on examined pedicels: Sporothrix, which occurred on 72% of the affected pedicels, and Fusarium (6%); other fungi were sterile. From pedicel tissue, four genera of fungi were isolated on potato dextrose agar: Sporothrix and Fusarium and, less frequently, Pestalotiopsis and Nigrospora. Based on alignment with internal transcribed spacer and ß-tubulin sequence data, the Sporothrix isolates were closely related to those in an environmental Ophiostoma/Sporothrix clade that contains Sporothrix stylites, S. humicola, and S. pallida but not the human pathogen S. schenkii. Based on EF1α gene sequences, four species in the Gibberella fujikuroi species complex (Fusarium proliferatum, F. pseudocircinatum, F. sacchari, and F. verticillioides) and two unnamed taxa in the F. incarnatum-equiseti species complex were identified. After artificial inoculation, representative Sporothrix and Fusarium isolates caused fuzzy pedicel symptoms on fruit of 'Grand Nain,' a commercial Cavendish cultivar. Fuzzy pedicel development was inhibited at 14°C (temperature at which fruit are shipped) but developed at 25°C (temperature at which fruit are marketed). Sporothrix isolates were insensitive to thiophanate-methyl fungicide in vitro and when used to treat pedicel surfaces prior to inoculation. Thus, it appears that benzimidazole fungicides would be ineffective as postharvest treatments for this problem. In summary, a new postharvest disease of banana, fuzzy pedicel, affects single fingers. It is caused by Sporothrix sp. and several species of Fusarium. Sporothrix spp. and F. pseudocircinatum have not been reported previously on banana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA