Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 67(12): e0067123, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37966227

RESUMEN

Tuberculosis meningitis (TBM) is essentially treated with the first-line regimen used against pulmonary tuberculosis, with a prolonged continuation phase. However, clinical outcomes are poor in comparison, for reasons that are only partially understood, highlighting the need for improved preclinical tools to measure drug distribution and activity at the site of disease. A predictive animal model of TBM would also be of great value to prioritize promising drug regimens to be tested in clinical trials, given the healthy state of the development pipeline for the first time in decades. Here, we report the optimization of a rabbit model of TBM disease induced via inoculation of Mycobacterium tuberculosis into the cisterna magna, recapitulating features typical of clinical TBM: neurological deterioration within months post-infection, acid-fast bacilli in necrotic lesions in the brain and spinal cord, and elevated lactate levels in cerebrospinal fluid (CSF). None of the infected rabbits recovered or controlled the disease. We used young adult rabbits, the size of which allows for spatial drug quantitation in critical compartments of the central nervous system that cannot be collected in clinical studies. To illustrate the translational value of the model, we report the penetration of linezolid from plasma into the CSF, meninges, anatomically distinct brain areas, cervical spine, and lumbar spine. Across animals, we measured the bacterial burden concomitant with neurological deterioration, offering a useful readout for drug efficacy studies. The model thus forms the basis for building a preclinical platform to identify improved regimens and inform clinical trial design.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Animales , Conejos , Antituberculosos/farmacología , Sistema Nervioso Central , Tuberculosis Meníngea/tratamiento farmacológico
2.
Antimicrob Agents Chemother ; 67(9): e0028423, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37565762

RESUMEN

Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Ratones Endogámicos C3H , Tuberculosis/tratamiento farmacológico , Pulmón/microbiología , Ratones Endogámicos
3.
Antimicrob Agents Chemother ; 67(11): e0059723, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37791784

RESUMEN

BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Ratones , Animales , Conejos , Ratones Endogámicos C3H , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Ratones Endogámicos
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203645

RESUMEN

Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.


Asunto(s)
Infecciones por Citomegalovirus , Microglía , Mycobacteriaceae , Animales , Ratones , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-6 , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Antiinflamatorios
5.
Clin Infect Dis ; 75(12): 2178-2185, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35486953

RESUMEN

BACKGROUND: Although previous studies have shown that vitamin A deficiency is associated with incident tuberculosis (TB) disease, the direction of the association has not been established. We investigated the impact of vitamin A deficiency on TB disease progression. METHODS: We conducted a longitudinal cohort study nested within a randomized clinical trial among HIV-infected patients in Haiti. We compared serial vitamin A levels in individuals who developed TB disease to controls matched on age, gender, follow-up time, and time to antiretroviral therapy initiation. We also evaluated histopathology, bacterial load, and immune outcomes in TB infection in a guinea pig model of dietary vitamin A deficiency. RESULTS: Among 773 participants, 96 developed incident TB during follow-up, 62.5% (60) of whom had stored serum samples obtained 90-365 days before TB diagnosis. In age- and sex- adjusted and multivariate analyses, respectively, incident TB cases were 3.99 times (95% confidence interval [CI], 2.41 to 6.60) and 3.59 times (95% CI, 2.05 to 6.29) more likely to have been vitamin A deficient than matched controls. Vitamin A-deficient guinea pigs manifested more extensive pulmonary pathology, atypical granuloma morphology, and increased bacterial growth after experimental TB infection. Reintroduction of dietary vitamin A to deficient guinea pigs after established TB disease successfully abrogated severe disease manifestations and altered cellular immune profiles. CONCLUSIONS: Human and animal studies support the role of baseline vitamin A deficiency as a determinant of future TB disease progression.


Asunto(s)
Tuberculosis Latente , Tuberculosis , Deficiencia de Vitamina A , Deficiencia de Vitamina D , Humanos , Animales , Cobayas , Vitamina A , Factores de Riesgo , Estudios Longitudinales , Deficiencia de Vitamina D/complicaciones , Tuberculosis/complicaciones , Tuberculosis Latente/complicaciones , Progresión de la Enfermedad
6.
Antimicrob Agents Chemother ; 66(3): e0221221, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35099272

RESUMEN

Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic, rather than pharmacokinetic, factors. Our results pave the way toward the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multidrug combinations to enable the prioritization of promising regimens for clinical trials.


Asunto(s)
Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Macrólidos/farmacología , Macrólidos/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas , Conejos
7.
Antimicrob Agents Chemother ; 65(11): e0058321, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370580

RESUMEN

Multiple drug discovery initiatives for tuberculosis are currently ongoing to identify and develop new potent drugs with novel targets in order to shorten treatment duration. One of the drug classes with a new mode of action is DprE1 inhibitors targeting an essential process in cell wall synthesis of Mycobacterium tuberculosis. In this investigation, three DprE1 inhibitors currently in clinical trials, TBA-7371, PBTZ169, and OPC-167832, were evaluated side-by-side as single agents in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon tuberculosis infection. The goal was to confirm the efficacy of the DprE1 inhibitors in a mouse tuberculosis model with advanced pulmonary pathology and perform comprehensive analysis of plasma, lung, and lesion-centric drug levels to establish pharmacokinetic-pharmacodynamic (PK-PD) parameters predicting efficacy at the site of infection. Results showed significant efficacy for all three DprE1 inhibitors in the C3HeB/FeJ mouse model after 2 months of treatment. Superior efficacy was observed for OPC-167832 even at low-dose levels, which can be attributed to its low MIC, favorable distribution, and sustained retention above the MIC throughout the dosing interval in caseous necrotic lesions, where the majority of bacteria reside in C3HeB/FeJ mice. These results support further progression of the three drug candidates through clinical development for tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Tiazinas , Tuberculosis , Animales , Ratones , Ratones Endogámicos C3H , Piperazinas , Tuberculosis/tratamiento farmacológico
8.
Am J Pathol ; 184(4): 1104-1118, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24492198

RESUMEN

Impaired glucose tolerance and type 2 diabetes were induced in guinea pigs to model the emerging comorbidity of Mycobacterium tuberculosis infection in diabetic patients. Type 2 diabetes mellitus was induced by low-dose streptozotocin in guinea pigs rendered glucose intolerant by first feeding a high-fat, high-carbohydrate diet before M. tuberculosis exposure. M. tuberculosis infection of diabetic guinea pigs resulted in severe and rapidly progressive tuberculosis (TB) with a shortened survival interval, more severe pulmonary and extrapulmonary pathology, and a higher bacterial burden compared with glucose-intolerant and nondiabetic controls. Compared with nondiabetics, diabetic guinea pigs with TB had an exacerbated proinflammatory response with more severe granulocytic inflammation and higher gene expression for the cytokines/chemokines interferon-γ, IL-17A, IL-8, and IL-10 in the lung and for interferon-γ, tumor necrosis factor-α, IL-8, and monocyte chemoattractant protein-1 in the spleen. TB disease progression in guinea pigs with impaired glucose tolerance was similar to that of nondiabetic controls in the early stages of infection but was more severe by day 90. The guinea pig model of type 2 diabetes-TB comorbidity mimics important features of the naturally occurring disease in humans. This model will be beneficial in understanding the complex pathogenesis of TB in diabetic patients and to test new strategies to improve TB and diabetes control when the two diseases occur together.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Tuberculosis/complicaciones , Tuberculosis/inmunología , Animales , Comorbilidad , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Citometría de Flujo , Cobayas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tuberculosis/patología
9.
Bioorg Med Chem Lett ; 25(21): 4820-4823, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26187705

RESUMEN

The formation of advanced glycation end-products (AGE) as a result of the action of reducing sugars on host macromolecules plays a role in increased morbidity of diabetic patients. There are currently no clinically available therapeutics for the prevention or eradication of AGEs. Following our previous identification of 2-aminoimidazole (2-AI) based AGE inhibitors and breakers, we now report the use of a rapid, scalable, two-step procedure to access a second generation of 2-AI based anti-AGE compounds from commercially available amino acids. Several second generation compounds exhibit increased AGE inhibition and breaking activty compared to the first generation compounds and to the known AGE inhibitor aminoguanidine.


Asunto(s)
Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Imidazoles/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Relación Estructura-Actividad
10.
Tetrahedron Lett ; 56(23): 3406-3409, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26146419

RESUMEN

Advanced glycation end-products (AGEs), unregulated modifications to host macromolecules that occur as a result of metabolic dysregulation, play a role in many diabetes related complications, inflammation and aging, and may lead to increased cardiovascular risk. Small molecules that have the ability to inhibit AGE formation, and even break preformed AGEs have enormous therapeutic potential in the treatment of these disease states. We report the screening of a series of 2-aminoimidazloles for anti-AGE activity, and the identification of a bis-2-aminoimidazole lead compound that possesses superior AGE inhibition and breaking activity compared to the known AGE inhibitor aminoguanidine.

11.
J Antimicrob Chemother ; 69(4): 1057-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24222613

RESUMEN

OBJECTIVES: Of the non-tuberculous mycobacteria, Mycobacterium abscessus is particularly refractory to antimicrobial therapy and new agents with activity against these pathogens are urgently needed. The screening of candidate antimicrobial agents against M. abscessus requires a relevant and reproducible animal model of chronic infection. Granulocyte-macrophage colony-stimulating factor knockout (GM-CSF KO) mice were used to develop a new animal model of chronic pulmonary M. abscessus infection that can be used for preclinical efficacy testing of antimicrobial drugs. METHODS: GM-CSF KO mice were infected with a clinical isolate of M. abscessus via intrapulmonary aerosol delivery using a microsprayer device. The clinical condition, histology and cfu of M. abscessus-infected GM-CSF KO mice were evaluated over a period of 4 months. Mice were treated with azithromycin (100 mg/kg) by oral gavage and the clinical condition, histology and bacterial burden was determined after 2 weeks of treatment. RESULTS: We show that pulmonary infection of GM-CSF KO mice with M. abscessus results in a chronic pulmonary infection that lends itself to preclinical testing of new antimicrobial drugs against this bacterium. Azithromycin treatment of M. abscessus-infected GM-CSF KO mice resulted in a lower bacterial burden in the lungs and spleen, weight gain and significant improvement in lung pathology. CONCLUSIONS: Intrapulmonary aerosol infection of GM-CSF KO mice with M. abscessus is a useful animal model for studying pathogenesis as well as pre-clinical testing of new compounds against M. abscessus in acute or chronic phases of infection.


Asunto(s)
Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia , Infecciones por Mycobacterium/tratamiento farmacológico , Mycobacterium/efectos de los fármacos , Neumonía Bacteriana/tratamiento farmacológico , Animales , Carga Bacteriana , Enfermedad Crónica , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Histocitoquímica , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Noqueados , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium/patología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Bazo/microbiología
12.
Front Immunol ; 15: 1424374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966641

RESUMEN

At the beginning of the COVID-19 pandemic those with underlying chronic lung conditions, including tuberculosis (TB), were hypothesized to be at higher risk of severe COVID-19 disease. However, there is inconclusive clinical and preclinical data to confirm the specific risk SARS-CoV-2 poses for the millions of individuals infected with Mycobacterium tuberculosis (M.tb). We and others have found that compared to singly infected mice, mice co-infected with M.tb and SARS-CoV-2 leads to reduced SARS-CoV-2 severity compared to mice infected with SARS-CoV-2 alone. Consequently, there is a large interest in identifying the molecular mechanisms responsible for the reduced SARS-CoV-2 infection severity observed in M.tb and SARS-CoV-2 co-infection. To address this, we conducted a comprehensive characterization of a co-infection model and performed mechanistic in vitro modeling to dynamically assess how the innate immune response induced by M.tb restricts viral replication. Our study has successfully identified several cytokines that induce the upregulation of anti-viral genes in lung epithelial cells, thereby providing protection prior to challenge with SARS-CoV-2. In conclusion, our study offers a comprehensive understanding of the key pathways induced by an existing bacterial infection that effectively restricts SARS-CoV-2 activity and identifies candidate therapeutic targets for SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Coinfección , Inmunidad Innata , Mycobacterium tuberculosis , SARS-CoV-2 , COVID-19/inmunología , Animales , Mycobacterium tuberculosis/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Ratones , Coinfección/inmunología , Humanos , Tuberculosis/inmunología , Tuberculosis/microbiología , Citocinas/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Índice de Severidad de la Enfermedad , Pulmón/inmunología , Pulmón/virología , Pulmón/microbiología , Pulmón/patología , Replicación Viral , Ratones Endogámicos C57BL , Femenino
13.
Vaccine ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704256

RESUMEN

Mucosal vaccines have the potential to elicit protective immune responses at the point of entry of respiratory pathogens, thus preventing even the initial seed infection. Unlike licensed injectable vaccines, mucosal vaccines comprising protein subunits are only in development. One of the primary challenges associated with mucosal vaccines has been identifying and characterizing safe yet effective mucosal adjuvants that can effectively prime multi-factorial mucosal immunity. In this study, we tested NanoSTING, a liposomal formulation of the endogenous activator of the stimulator of interferon genes (STING) pathway, cyclic guanosine adenosine monophosphate (cGAMP), as a mucosal adjuvant. We formulated a vaccine based on the H1 antigen (fusion protein of Ag85b and ESAT-6) adjuvanted with NanoSTING. Intranasal immunization of NanoSTING-H1 elicited a strong T-cell response in the lung of vaccinated animals characterized by (a) CXCR3+ KLRG1- lung resident T cells that are known to be essential for controlling bacterial infection, (b) IFNγ-secreting CD4+ T cells which is necessary for intracellular bactericidal activity, and (c) IL17-secreting CD4+ T cells that can confer protective immunity against multiple clinically relevant strains of Mtb. Upon challenge with aerosolized Mycobacterium tuberculosis Erdman strain, intranasal NanoSTING-H1 provides protection comparable to subcutaneous administration of the live attenuated Mycobacterium bovis vaccine strain Bacille-Calmette-Guérin (BCG). Our results indicate that NanoSTING adjuvanted protein vaccines can elicit a multi-factorial immune response that protects from infection by M. tuberculosis.

14.
J Virol ; 86(18): 10015-27, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22787210

RESUMEN

Deer mice are the principal reservoir hosts of Sin Nombre virus, the etiologic agent of most hantavirus cardiopulmonary syndrome cases in North America. Infection of deer mice results in persistence without conspicuous pathology, and most, if not all, infected mice remain infected for life, with periods of viral shedding. The kinetics of viral load, histopathology, virus distribution, and immune gene expression in deer mice were examined. Viral antigen was detected as early as 5 days postinfection and peaked on day 15 in the lungs, hearts, kidneys, and livers. Viral RNA levels varied substantially but peaked on day 15 in the lungs and heart, and antinucleocapsid IgG antibodies appeared in some animals on day 10, but a strong neutralizing antibody response failed to develop during the 20-day experiment. No clinical signs of disease were observed in any of the infected deer mice. Most genes were repressed on day 2, suggesting a typical early downregulation of gene expression often observed in viral infections. Several chemokine and cytokine genes were elevated, and markers of a T cell response occurred but then declined days later. Splenic transforming growth factor beta (TGF-ß) expression was elevated early in infection, declined, and then was elevated again late in infection. Together, these data suggest that a subtle immune response that fails to clear the virus occurs in deer mice.


Asunto(s)
Peromyscus/inmunología , Peromyscus/virología , Virus Sin Nombre/inmunología , Virus Sin Nombre/patogenicidad , Animales , Anticuerpos Antivirales/sangre , Secuencia de Bases , Citocinas/genética , Cartilla de ADN/genética , Reservorios de Enfermedades/virología , Femenino , Expresión Génica , Síndrome Pulmonar por Hantavirus/genética , Síndrome Pulmonar por Hantavirus/inmunología , Síndrome Pulmonar por Hantavirus/patología , Síndrome Pulmonar por Hantavirus/virología , Humanos , Inmunoglobulina G/sangre , Cinética , Masculino , ARN Viral/genética , ARN Viral/metabolismo , Virus Sin Nombre/genética , Carga Viral , Esparcimiento de Virus
15.
Front Neurosci ; 17: 1157652, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274195

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis infection, is an ongoing epidemic with an estimated ten million active cases of the disease worldwide. Pulmonary tuberculosis is associated with cognitive and memory deficits, and patients with this disease are at an increased risk for Parkinson's disease and dementia. Although epidemiological data correlates neurological effects with peripheral disease, the pathology in the central nervous system is unknown. In an established guinea pig model of low-dose, aerosolized Mycobacterium tuberculosis infection, we see behavior changes and memory loss in infected animals. We correlate these findings with pathological changes within brain regions related to motor, cognition, and sensation across disease progression. This includes microglial and astrocytic proliferation and reactivity. These cellular changes are followed by the aggregation of neurotoxic amyloid ß and phosphorylated tau and, ultimately, neuronal degeneration in the hippocampus. Through these data, we have obtained a greater understanding of the neuropathological effects of a peripheral disease that affects millions of persons worldwide.

16.
Tuberculosis (Edinb) ; 138: 102302, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586154

RESUMEN

Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.


Asunto(s)
Mycobacterium tuberculosis , Vacunas de ADN , Animales , Ratones , Linfocitos T CD8-positivos , Mycobacterium avium/metabolismo , Mycobacterium tuberculosis/genética , Vacunación/métodos , Citocinas/metabolismo , Inmunización Secundaria/métodos
17.
Pharmaceuticals (Basel) ; 16(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242512

RESUMEN

Mycobacterium tuberculosis (M.tb) has infected one-quarter of the world's population and led to the deaths of 1.6 million individuals in 2021 according to estimates from the World Health Organization. The rise in prevalence of multidrug-resistant and extensively drug-resistant M.tb strains coupled with insufficient therapies to treat such strains has motivated the development of more effective treatments and/or delivery modalities. Bedaquiline, a diarylquinoline antimycobacterial agent, effectively targets mycobacterial ATP synthase but may lead to systemic complications upon oral delivery. Targeted delivery of bedaquiline to the lungs represents an alternative strategy to harness the sterilizing benefits of the drug against M.tb while mitigating off-target side effects. Two pulmonary delivery modalities were developed herein, including dry powder inhalation and liquid instillation. Despite bedaquiline's poor water solubility, spray drying was performed in predominantly aqueous conditions (≥80%) to avoid a closed-loop, inert system. Aerosols of spray-dried bedaquiline with L-leucine excipient outperformed spray-dried bedaquiline alone, demonstrating superior fine particle fraction metrics (~89% of the emitted dose below <5 µm), suitable for inhalation therapies. Furthermore, the use of a 2-hydroxypropyl-ß-cyclodextrin excipient allowed a molecular dispersion of bedaquiline in an aqueous solution for liquid instillation. Both delivery modalities were successfully administered to Hartley guinea pigs for pharmacokinetic analysis and were well-tolerated by the animals. Intrapulmonary liquid delivery of bedaquiline led to adequate serum absorption and appropriate peak serum concentrations of the drug. The liquid formulation was superior in systemic uptake compared to the powder formulation. The predominant route via which M.tb bacilli enter the body is aerosol droplets that are deposited onto airway surfaces. For this reason, we believe that further studies should focus on inhalation or intrapulmonary therapies that target the site of entry and primary site of infection for M.tb.

18.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292852

RESUMEN

CD1 is an antigen presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigen. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that closely paralleled the kinetic changes in CD1b expression in Mtb infected lung and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.

19.
Tuberculosis (Edinb) ; 142: 102377, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37531864

RESUMEN

The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.


Asunto(s)
Coinfección , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Tuberculosis Bovina , Animales , Bovinos , Humanos , Micobacterias no Tuberculosas , Infecciones por Mycobacterium no Tuberculosas/microbiología
20.
Cell Rep ; 41(11): 111783, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516760

RESUMEN

Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Ratones , Humanos , Animales , Vacuna BCG , Micobacterias no Tuberculosas , Inmunidad Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA