RESUMEN
Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-ß1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-ß1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-ß1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.
Asunto(s)
Lisofosfolípidos , Osteogénesis , Receptores Lisofosfolípidos , Pérdida de Diente , Animales , Ratones , Diferenciación Celular/fisiología , Lisofosfolípidos/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Receptores Lisofosfolípidos/metabolismoRESUMEN
Glomerular epithelial protein-1 (Glepp1), a R3 subtype family of receptor-type protein tyrosine phosphatases, plays important role in the activation of Src family kinases and regulates cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, we firstly examined the functional evaluation of Glepp1 in tooth development and morphogenesis. The precise expression level and developmental function of Glepp1 were examined by RT-qPCR, in situ hybridization, and loss and gain of functional study using a range of in vitro organ cultivation methods. Expression of Glepp1 was detected in the developing tooth germs in cap and bell stage of tooth development. Knocking down Glepp1 at E13 for 2 days showed the altered expression levels of tooth development-related signaling molecules, including Bmps, Dspp, Fgf4, Lef1, and Shh. Moreover, transient knock down of Glepp1 revealed alterations in cellular physiology, examined by the localization patterns of Ki67 and E-cadherin. Similarly, knocking down of Glepp1 showed disrupted enamel rod and interrod formation in 3-week renal transplanted teeth. In addition, due to attrition of odontoblastic layers, the expression signals of Dspp and the localization of NESTIN were almost not detected after knock down of Glepp1; however, their expressions were increased after Glepp1 overexpression. Thus, our results suggested that Glepp1 plays modulating roles during odontogenesis by regulating the expression levels of signaling molecules and cellular events to achieve the proper structural formation of hard tissue matrices in mice molar development.
Asunto(s)
Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Diente , Animales , Ratones , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Odontogénesis , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Diente/metabolismoRESUMEN
To understand the mechanisms underlying tooth morphogenesis, we examined the developmental roles of important posttranslational modification, O-GlcNAcylation, which regulates protein stability and activity by the addition and removal of a single sugar (O-GlcNAc) to the serine or threonine residue of the intracellular proteins. Tissue and developmental stage-specific immunostaining results against O-GlcNAc and O-GlcNAc transferase (OGT) in developing tooth germs would suggest that O-GlcNAcylation is involved in tooth morphogenesis, particularly in the cap and secretory stage. To evaluate the developmental function of OGT-mediated O-GlcNAcylation, we employed an in vitro tooth germ culture method at E14.5, cap stage before secretory stage, for 1 and 2 days, with or without OSMI-1, a small molecule OGT inhibitor. To examine the mineralization levels and morphological changes, we performed renal capsule transplantation for one and three weeks after 2 days of in vitro culture at E14.5 with OSMI-1 treatment. After OGT inhibition, morphological and molecular alterations were examined using histology, immunohistochemistry, real-time quantitative polymerase chain reaction, in situ hybridization, scanning electron microscopy, and ground sectioning. Overall, inhibition of OGT resulted in altered cellular physiology, including proliferation, apoptosis, and epithelial rearrangements, with significant changes in the expression patterns of ß-catenin, fibroblast growth factor 4 (fgf4), and sonic hedgehog (Shh). Moreover, renal capsule transplantation and immunolocalizations of Amelogenin and Nestin results revealed that OGT-inhibited tooth germs at cap stage exhibited with structural changes in cuspal morphogenesis, amelogenesis, and dentinogenesis of the mineralized tooth. Overall, we suggest that OGT-mediated O-GlcNAcylation regulates cell signaling and physiology in primary enamel knot during tooth development, thus playing an important role in mouse molar morphogenesis.
Asunto(s)
N-Acetilglucosaminiltransferasas , Diente , Animales , Ratones , Apoptosis/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Diente/crecimiento & desarrollo , Diente/metabolismoRESUMEN
Mechanically activated factors are important in organogenesis, especially in the formation of secretory organs, such as salivary glands. Piezo-type mechanosensitive ion channel component 1 (Piezo1), although previously studied as a physical modulator of the mechanotransduction, was firstly evaluated on its developmental function in this study. The detailed localization and expression pattern of Piezo1 during mouse submandibular gland (SMG) development were analyzed using immunohistochemistry and RT-qPCR, respectively. The specific expression pattern of Piezo1 was examined in acinar-forming epithelial cells at embryonic day 14 (E14) and E16, which are important developmental stages for acinar cell differentiation. To understand the precise function of Piezo1 in SMG development, siRNA against Piezo1 (siPiezo1) was employed as a loss-of-function approach, during in vitro organ cultivation of SMG at E14 for the designated period. Alterations in the histomorphology and expression patterns of related signaling molecules, including Bmp2, Fgf4, Fgf10, Gli1, Gli3, Ptch1, Shh, and Tgfß-3, were examined in acinar-forming cells after 1 and 2 days of cultivation. Particularly, altered localization patterns of differentiation-related signaling molecules including Aquaporin5, E-cadherin, Vimentin, and cytokeratins would suggest that Piezo1 modulates the early differentiation of acinar cells in SMGs by modulating the Shh signaling pathway.
Asunto(s)
Mecanotransducción Celular , Glándula Submandibular , Ratones , Animales , Glándula Submandibular/metabolismo , Glándulas Salivales , Morfogénesis/fisiología , Diferenciación Celular , Canales Iónicos/metabolismoRESUMEN
In the present study, we examined the bone healing capacity of Meox2, a homeobox gene that plays essential roles in the differentiation of a range of developing tissues, and identified its putative function in palatogenesis. We applied the knocking down of Meox2 in human periodontal ligament fibroblasts to examine the osteogenic potential of Meox2. Additionally, we applied in vivo periodontitis induced experiment to reveal the possible application of Meox2 knockdown for 1 and 2 weeks in bone healing processes. We examined the detailed histomorphological changes using Masson's trichrome staining and micro-computed tomography evaluation. Moreover, we observed the localization patterns of various signaling molecules, including α-SMA, CK14, IL-1ß, and MPO to examine the altered bone healing processes. Furthermore, we investigated the process of bone formation using immunohistochemistry of Osteocalcin and Runx2. On the basis of the results, we suggest that the knocking down of Meox2 via the activation of osteoblast and modulation of inflammation would be a plausible answer for bone regeneration as a gene therapy. Additionally, we propose that the purpose-dependent selection and application of developmental regulation genes are important for the functional regeneration of specific tissues and organs, where the pathological condition of tooth loss lesion would be.
Asunto(s)
Regeneración Ósea , Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Ligamento Periodontal/metabolismo , Pérdida de Diente/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Transducción de Señal , Pérdida de Diente/genéticaRESUMEN
Introduction: Prohibitin (PHB) is an essential scaffold protein that modulates signaling pathways controlling cell survival, metabolism, inflammation, and bone formation. However, its specific role in periodontium development remains less understood. This study aims to elucidate the expression pattern and function of PHB in periodontium development and its involvement in alveolar bone formation. Methods: Immunolocalization of PHB in the periodontium of postnatal (PN) mice were examined. Phb morpholino was micro-injected into the right-side mandible at PN5, corresponding to the position where the alveolar bone process forms in relation to the lower first molar. The micro-injection with a scramble control (PF-127) and the left-side mandibles were used as control groups. Five days post-micro-injection, immunohistochemical analysis and micro-CT evaluation were conducted to assess bone mass and morphological changes. Additionally, expression patterns of signaling molecules were examined following Phb downregulation using 24-h in vitro cultivation of developing dental mesenchyme at E14.5. Results: The immunostaining of PHB showed its localization in the periodontium at PN5, PN8, and PN10. The in vitro cultivation of dental mesenchyme resulted in alterations in Bmps, Runx2, and Wnt signalings after Phb knock-down. At 5 days post-micro-injection, Phb knocking down showed weak immunolocalizations of runt-related transcription factor (RUNX2) and osteocalcin (OCN). However, knocking down Phb led to histological alterations characterized by decreased bone mass and stronger localizations of Ki67 and PERIOSTIN in the periodontium compared 1 to control groups. The micro-CT evaluation showed decreased bone volume and increased PDL space in the Phb knock-down specimens, suggesting its regulatory role in bone formation. Discussion: The region-specific localization of PHB in the margin where alveolar bone forms suggests its involvement in alveolar bone formation and the differentiation of the periodontal ligament. Overall, our findings suggest that Phb plays a modulatory role in alveolar bone formation by harmoniously regulating bone-forming-related signaling molecules during periodontium development.
RESUMEN
BACKGROUND: The tongue is a muscular fleshy organ in the oral cavity that is anatomically divided into the dorsal, ventral, anterior, and posterior part. The intricate tissue organisation and diverse origins of the tongue make it a complex organ of the oral cavity. OBJECTIVES: To reveal the signalling molecules involved in the formation of the dorsal and ventral parts of the tongue through microarray analysis. METHODS: Dorsal and ventral tongue tissues were isolated from embryonic day 14 mice by micro-dissection. RNA was extracted from the dorsal and ventral tongue tissues separately for microarray analysis. Microarray data were confirmed by quantitative reverse transcription polymerase chain reaction and whole-mount in situ hybridisation. RESULTS: Microarray analysis revealed expression of 33,793 genes. Of these, 931 genes were found to be equally expressed in both the dorsal and ventral parts of the tongue. On limiting the fold-change cut-off to over 1.5-fold, 725 genes were expressed over 1.5-fold in the ventral part and 1,672 in the dorsal part of the tongue. The qPCR and whole-mount in situ hybridisation revealed the expressions of angiopoietin 2 (Angpt2), fibroblast growth factor 18 (Fgf18), mesenchyme homeobox gene1 (Meox1), and SPARC-related modular calcium binding 2 (Smoc2) in the ventral part of the tongue. CONCLUSIONS: Numerous signalling molecules can be selected from our microarray results to examine their roles in tongue development and disease model systems. In the near future, the selection of candidate genes and their functional evaluations will be performed through loss- and gain-of-function mutation studies.
Asunto(s)
Angiopoyetina 2 , Calcio , Animales , Ratones , Organogénesis , ARN , LenguaRESUMEN
Introduction: During tooth development, proper protein folding and trafficking are significant processes as newly synthesized proteins proceed to form designated tissues. Endoplasmic reticulum (ER) stress occurs inevitably in tooth development as unfolded and misfolded proteins accumulate in ER. 4-Phenylbutyric acid (4PBA) is a FDA approved drug and known as a chemical chaperone which alleviates the ER stress. Recently, several studies showed that 4PBA performs therapeutic effects in some genetic diseases due to misfolding of proteins, metabolic related-diseases and apoptosis due to ER stress. However, the roles of 4PBA during odontogenesis are not elucidated. This study revealed the effects of 4PBA during molar development in mice. Methods: We employed in vitro organ cultivation and renal transplantation methods which would mimic the permanent tooth development in an infant period of human. The in vitro cultivated tooth germs and renal calcified teeth were examined by histology and immunohistochemical analysis. Results and Discussion: Our results revealed that treatment of 4PBA altered expression patterns of enamel knot related signaling molecules, and consequently affected cellular secretion and patterned formation of dental hard tissues including dentin and enamel during tooth morphogenesis. The alteration of ER stress by 4PBA treatment during organogenesis would suggest that proper ER stress is important for pattern formation during tooth development and morphogenesis, and 4PBA as a chemical chaperone would be one of the candidate molecules for dental and hard tissue regeneration.
RESUMEN
Circumvallate papilla (CVP) is a distinctively structured with dome-shaped apex, and the surrounding trench which contains over two hundred taste buds on the lateral walls. Although CVP was extensively studied to determine the regulatory mechanisms during organogenesis, it still remains to be elucidated the principle mechanisms of signaling regulations on morphogenesis including taste buds formation. The key role of Yes-associated protein (YAP) in the regulation of organ size and cell proliferation in vertebrates is well understood, but little is known about the role of this signaling pathway in CVP development. We aimed to determine the putative roles of YAP signaling in the epithelial patterning during CVP morphogenesis. To evaluate the precise localization patterns of YAP and other related signaling molecules, including ß-catenin, Ki67, cytokeratins, and PGP9.5, in CVP tissue, histology and immunohistochemistry were employed at E16 and adult mice. Our results suggested that there are specific localization patterns of YAP and Wnt signaling molecules in developing and adult CVP. These concrete localization patterns would provide putative involvements of YAP and Wnt signaling for proper epithelial cell differentiation including the formation and maintenance of taste buds.
Asunto(s)
Papilas Gustativas/citología , Papilas Gustativas/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Ratones , Organogénesis/genética , Organogénesis/fisiología , Embarazo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Señalizadoras YAP/genéticaRESUMEN
Apigenin, a natural product belonging to the flavone class, affects various cell physiologies, such as cell signaling, inflammation, proliferation, migration, and protease production. In this study, apigenin was applied to mouse molar pulp after mechanically pulpal exposure to examine the detailed function of apigenin in regulating pulpal inflammation and tertiary dentin formation. In vitro cell cultivation using human dental pulp stem cells (hDPSCs) and in vivo mice model experiments were employed to examine the effect of apigenin in the pulp and dentin regeneration. In vitro cultivation of hDPSCs with apigenin treatment upregulated bone morphogenetic protein (BMP)- and osteogenesis-related signaling molecules such as BMP2, BMP4, BMP7, bone sialoprotein (BSP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) after 14 days. After apigenin local delivery in the mice pulpal cavity, histology and cellular physiology, such as the modulation of inflammation and differentiation, were examined using histology and immunostainings. Apigenin-treated specimens showed period-altered immunolocalization patterns of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), NESTIN, and transforming growth factor (TGF)-ß1 at 3 and 5 days. Moreover, the apigenin-treated group showed a facilitated dentin-bridge formation with few irregular tubules after 42 days from pulpal cavity preparation. Micro-CT images confirmed obvious dentin-bridge structures in the apigenin-treated specimens compared with the control. Apigenin facilitated the reparative dentin formation through the modulation of inflammation and the activation of signaling regulations. Therefore, apigenin would be a potential therapeutic agent for regenerating dentin in exposed pulp caused by dental caries and traumatic injury.
RESUMEN
OBJECTIVE: This study was aimed to determine prevalence and resistance pattern like multidrug resistant (MDR) or ESBL nature of E. coli and Klebsiella spp. from various sewage drain samples with an idea to deliver baseline information that could be utilized for defining guidelines for the treatment of hospital sewages. RESULTS: Of 10 sewage samples analyzed, 7 (70%) contained E. coli while 6 (60%) contained Klebsiella. Except one sample, all positive samples contained both E. coli and Klebsiella spp. E. coli isolates were resistant to ampicillin, amoxicillin, cefoxitin, cefuroxime, and cefpodoxime; while 85.7% were resistant to amoxicillin/clavulanate, ceftazidime, cefotaxime and ceftriaxone. 71.4%, 57.1%, 42.9%, and 28.6% were resistant to aztreonam, trimethoprim/sulfamethoxazole, nitrofurantoin, and gentamicin. Most were sensitive to chloramphenicol, ofloxacin, ciprofloxacin, and azithromycin. 85.7% and 57.1% of E. coli were MDR and ESBL isolates, respectively. Klebsiella were resistant to ampicillin, amoxicillin, and amoxicillin/clavulanate. 83.4% of Klebsiella were resistant to cefoxitin. 66.7% of strains were resistant to cefuroxime, ceftazidime, cefotaxime, ceftriaxone, and cefpodoxime. Klebsiella showed 50% resistant to aztreonam and trimethoprim/sulfamethoxazole, while 33.3% were resistant to chloramphenicol, nitrofurantoin, ofloxacin, and ciprofloxacin. Klebsiella were sensitive to azithromycin and gentamicin. 66.7% and 33.3% of Klebsiella were MDR and ESBL isolates, respectively.