Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chemistry ; 28(46): e202201179, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35666136

RESUMEN

A highly water- and air-stable Fe(II) complex with the quinol-containing macrocyclic ligand H4 qp4 reacts with H2 O2 to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or two para-quinones. The reaction increases the T1 -weighted relaxivity over four-fold, enabling the complex to detect H2 O2 using clinical MRI technology. The iron-containing sensor differs from its recently characterized manganese analog, which also detects H2 O2 , in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity.


Asunto(s)
Medios de Contraste , Hierro , Ligandos , Imagen por Resonancia Magnética , Agua
2.
Inorg Chem ; 61(48): 19039-19048, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36413487

RESUMEN

Energy storage is a vital aspect for the successful implementation of renewable energy resources on a global scale. Herein, we investigated the redox cycle of nickel(II) bis(diethyldithiocarbamate), NiII(dtc)2, for potential use as a multielectron storage catholyte in nonaqueous redox flow batteries (RFBs). Previous studies have shown that the unique redox cycle of NiII(dtc)2 offers 2e- chemistry upon oxidation from NiII → NiIV but 1e- chemistry upon reduction from NiIV → NiIII → NiII. Electrochemical experiments presented here show that the addition of as little as 10 mol % ZnII(ClO4)2 to the electrolyte consolidates the two 1e- reduction peaks into a single 2e- reduction where [NiIV(dtc)3]+ is reduced directly to NiII(dtc)2. This catalytic enhancement is believed to be due to ZnII removal of a dtc- ligand from a NiIII(dtc)3 intermediate, resulting in more facile reduction to NiII(dtc)2. The addition of ZnII also improves the 2e- oxidation, shifting the anodic peak negative and decreasing the 2e- peak separation. H-cell cycling experiments showed that 97% Coulombic efficiency and 98% charge storage efficiency was maintained for 50 cycles over 25 h using 0.1 M ZnII(ClO4)2 as the supporting electrolyte. If ZnII(ClO4)2 was replaced with TBAPF6 in the electrolyte, the Coulombic efficiency fell to 78%. The use of ZnII to increase the reversibility of 2e- transfer is a promising result that points to the ability to use nickel dithiocarbonates for multielectron storage in RFBs.

3.
Inorg Chem ; 60(12): 8368-8379, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34042423

RESUMEN

Previously prepared Mn(II)- and quinol-containing magnetic resonance imaging (MRI) contrast agent sensors for H2O2 relied on linear polydentate ligands to keep the redox-activatable quinols in close proximity to the manganese. Although these provide positive T1-weighted relaxivity responses to H2O2 that result from oxidation of the quinol groups to p-quinones, these reactions weaken the binding affinity of the ligands, promoting dissociation of Mn(II) from the contrast agent in aqueous solution. Here, we report a new ligand, 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane, that consists of two quinols covalently tethered to a cyclam macrocycle. The macrocycle provides stronger thermodynamic and kinetic barriers for metal-ion dissociation in both the reduced and oxidized forms of the ligand. The Mn(II) complex reacts with H2O2 to produce a more highly aquated Mn(II) species that exhibits a 130% greater r1, quadrupling the percentile response of our next best sensor. With a large excess of H2O2, there is a noticeable induction period before quinol oxidation and r1 enhancement occurs. Further investigation reveals that, under such conditions, catalase activity initially outcompetes ligand oxidation, with the latter occurring only after most of the H2O2 has been depleted.

4.
Photosynth Res ; 143(2): 183-192, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31925629

RESUMEN

Worldwide there is a large research investment in developing solar fuel systems as clean and sustainable sources of energy. The fundamental mechanisms of natural photosynthesis can provide a source of inspiration for these studies. Photosynthetic reaction center (RC) proteins capture and convert light energy into chemical energy that is ultimately used to drive oxygenic water-splitting and carbon fixation. For the light energy to be used, the RC communicates with other donor/acceptor components via a sophisticated electron transfer scheme that includes electron transfer reactions between soluble and membrane bound proteins. Herein, we reengineer an inherent interprotein electron transfer pathway in a natural photosynthetic system to make it photocatalytic for aqueous H2 production. The native electron shuttle protein ferredoxin (Fd) is used as a scaffold for binding of a ruthenium photosensitizer and H2 catalytic function is imparted to its partner protein, ferredoxin-NADP+-reductase (FNR), by attachment of cobaloxime molecules. We find that this 2-protein biohybrid system produces H2 in aqueous solutions via light-induced interprotein electron transfer reactions (TON > 2500 H2/FNR), providing insight about using native protein-protein interactions as a method for fuel generation.


Asunto(s)
Hidrógeno/metabolismo , Luz , Anabaena/enzimología , Catálisis/efectos de la radiación , Dominio Catalítico , Transporte de Electrón/efectos de la radiación , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/metabolismo , NADP/metabolismo , Concentración Osmolar , Fármacos Fotosensibilizantes/química , Rutenio/química , Factores de Tiempo
5.
Biochemistry ; 57(11): 1722-1732, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29298044

RESUMEN

Periplasmic cytochrome A (PpcA) is a representative of a broad class of multiheme cytochromes functioning as protein "nanowires" for storage and extracellular transfer of multiple electrons in the δ-proteobacterium Geobacter sulfurreducens. PpcA contains three bis-His coordinated hemes held in a spatial arrangement that is highly conserved among the multiheme cytochromes c3 and c7 families, carries low potential hemes, and is notable for having one of the lowest number of amino acids utilized to maintain a characteristic protein fold and site-specific heme function. Low temperature X-band electron paramagnetic resonance (EPR) spectroscopy has been used to characterize the electronic configuration of the Fe(III) and the ligation mode for each heme. The three sets of EPR signals are assigned to individual hemes in the three-dimensional crystal structure. The relative energy levels of the Fe(III) 3d orbitals for individual hemes were estimated from the principal g-values. The observed g-tensor anisotropy was used as a probe of electronic structure of each heme, and differences were determined by specifics of axial ligation. To ensure unambiguous assignment of highly anisotropic low-spin (HALS) signal to individual hemes, EPR analyses of iron atom electronic configurations have been supplemented with investigation of porphyrin macrocycles by one-dimensional 1H NMR chemical shift patterns for the methyl substituents. Within optimized geometry of hemes in PpcA, the magnetic interactions between hemes were found to be minimal, similar to the c3 family of tetraheme cytochromes.


Asunto(s)
Citocromos a/química , Geobacter/enzimología , Hemo/química , Proteínas Periplasmáticas/química , Espectroscopía de Resonancia por Spin del Electrón
6.
Biochim Biophys Acta Bioenerg ; 1859(8): 619-630, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777686

RESUMEN

The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.


Asunto(s)
Citocromos/metabolismo , Electrones , Geobacter/metabolismo , Hemo/metabolismo , Sustancias Húmicas , Secuencia de Aminoácidos , Citocromos/química , Transporte de Electrón , Hemo/química , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Termodinámica
7.
Biochem J ; 474(2): 231-246, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28062839

RESUMEN

The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e-/H+ coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pKa values of the redox-Bohr center, providing insights into the e-/H+ coupling molecular mechanisms driven by PpcA in G. sulfurreducens.


Asunto(s)
Proteínas Bacterianas/química , Citocromos c/química , Electrones , Geobacter/química , Hemo/química , Protones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Geobacter/enzimología , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Marcaje Isotópico , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
8.
Nature ; 473(7348): 540-3, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21532589

RESUMEN

Molecular replacement procedures, which search for placements of a starting model within the crystallographic unit cell that best account for the measured diffraction amplitudes, followed by automatic chain tracing methods, have allowed the rapid solution of large numbers of protein crystal structures. Despite extensive work, molecular replacement or the subsequent rebuilding usually fail with more divergent starting models based on remote homologues with less than 30% sequence identity. Here we show that this limitation can be substantially reduced by combining algorithms for protein structure modelling with those developed for crystallographic structure determination. An approach integrating Rosetta structure modelling with Autobuild chain tracing yielded high-resolution structures for 8 of 13 X-ray diffraction data sets that could not be solved in the laboratories of expert crystallographers and that remained unsolved after application of an extensive array of alternative approaches. We estimate that the new method should allow rapid structure determination without experimental phase information for over half the cases where current methods fail, given diffraction data sets of better than 3.2 Å resolution, four or fewer copies in the asymmetric unit, and the availability of structures of homologous proteins with >20% sequence identity.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Proteínas/química , Homología Estructural de Proteína , Cristalografía por Rayos X , Bases de Datos de Proteínas , Electrones , Alineación de Secuencia , Homología de Secuencia de Aminoácido
9.
Biochim Biophys Acta ; 1847(10): 1129-38, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26071085

RESUMEN

Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the AH2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (-127mV) compared to that of AH2QDS (-184mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs.

10.
Biochim Biophys Acta ; 1837(6): 750-60, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24530867

RESUMEN

The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.


Asunto(s)
Antraquinonas/metabolismo , Citocromos/metabolismo , Geobacter/enzimología , Sustancias Húmicas , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oxidación-Reducción , Espectrofotometría Ultravioleta
11.
Biochim Biophys Acta ; 1837(6): 920-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24463054

RESUMEN

The periplasmic sensor domains GSU582 and GSU935 are part of methyl-accepting chemotaxis proteins of the bacterium Geobacter sulfurreducens containing one c-type heme and a PAS-like fold. Their spectroscopic properties were shown previously to share similar spectral features. In both sensors, the heme group is in the high-spin form in the oxidized state and low-spin after reduction and binding of a methionine residue. Therefore, it was proposed that this redox-linked ligand switch might be related to the signal transduction mechanism. We now report the thermodynamic and kinetic characterization of the sensors GSU582 and GSU935 by visible spectroscopy and stopped-flow techniques, at several pH and ionic strength values. Despite their similar spectroscopic features, the midpoint reduction potentials and the rate constants for reduction by dithionite are considerably different in the two sensors. The reduction potentials of both sensors are negative and well framed within the typical anoxic subsurface environments in which Geobacter species predominate. The midpoint reduction potentials of sensor GSU935 are lower than those of GSU582 at all pH and ionic strength values and the same was observed for the reduction rate constants. The origin of the different functional properties of these closely related sensors is rationalized in the terms of the structures. The results suggest that the sensors are designed to function in different working potential ranges, allowing the bacteria to trigger an adequate cellular response in different anoxic subsurface environments. These findings provide an explanation for the co-existence of two similar methyl-accepting chemotaxis proteins in G. sulfurreducens.


Asunto(s)
Proteínas Bacterianas/química , Quimiotaxis , Geobacter/química , Hemo/química , Termodinámica , Concentración de Iones de Hidrógeno , Cinética , Concentración Osmolar , Conformación Proteica , Espectrofotometría Ultravioleta
12.
Biochemistry ; 53(31): 5070-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25028772

RESUMEN

Surface binding and interactions of anionic porphyins bound to cationic proteins have been studied for nearly three decades and are relevant as models for protein surface molecular recognition and photoinitiated electron transfer. However, interpretation of data in nearly all reports explicitly or implicitly assumed interaction of porphyrin with monodisperse proteins in solutions. In this report, using small-angle X-ray scattering with solution phase samples, we demonstrate that horse heart cytochrome (cyt) c, triheme cytochrome c7 PpcA from Geobacter sulfurreducens, and hen egg lysozyme multimerize in the presence of zinc tetrakis(4-sulfonatophenyl)porphyrin (ZnTPPS). Multimerization of cyt c showed a pH dependence with a stronger apparent binding affinity under alkaline conditions and was weakened in the presence of a high salt concentration. Ferric-cyt c formed complexes larger than those formed by ferro-cyt c. Free base TPPS and FeTPPS facilitated formation of complexes larger than those of ZnTPPS. No increase in protein aggregation state for cationic proteins was observed in the presence of cationic porphyrins. All-atom molecular dynamics simulations of cyt c and PpcA with free base TPPS corroborated X-ray scattering results and revealed a mechanism by which the tetrasubstituted charged porphyrins serve as bridging ligands nucleating multimerization of the complementarily charged protein. The final aggregation products suggest that multimerization involves a combination of electrostatic and hydrophobic interactions. The results demonstrate an overlooked complexity in the design of multifunctional ligands for protein surface recognition.


Asunto(s)
Metaloporfirinas/farmacología , Multimerización de Proteína/efectos de los fármacos , Animales , Sitios de Unión , Cationes , Citocromos c/química , Ligandos , Metaloporfirinas/química , Modelos Moleculares , Simulación de Dinámica Molecular , Muramidasa/química , Porfirinas/farmacología , Dispersión del Ángulo Pequeño , Soluciones , Electricidad Estática , Difracción de Rayos X
13.
Biochim Biophys Acta ; 1827(4): 484-92, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23313804

RESUMEN

Extracellular electron transfer is one of the physiological hallmarks of Geobacteraceae. Most of the Geobacter species encode for more than 100 c-type cytochromes which are, in general, poorly conserved between individual species. An exception to this is the PpcA family of periplasmic triheme c-type cytochromes, which are the most abundant proteins in these bacteria. The functional characterization of PpcA showed that it has the necessary properties to couple electron/proton transfer, a fundamental step for ATP synthesis. The detailed thermodynamic characterization of a PpcA mutant, in which the strictly conserved residue phenylalanine 15 was replaced by leucine, showed that the global redox network of cooperativities among heme groups is altered, preventing the mutant from performing a concerted electron/proton transfer. In this work, we determined the solution structure of PpcA F15L mutant in the fully reduced state using NMR spectroscopy by producing (15)N-labeled protein. In addition, pH-dependent conformational changes were mapped onto the structure. The mutant structure obtained is well defined, with an average pairwise root-mean-square deviation of 0.36Å for the backbone atoms and 1.14Å for all heavy atoms. Comparison between the mutant and wild-type structures elucidated the contribution of phenylalanine 15 in the modulation of the functional properties of PpcA.


Asunto(s)
Grupo Citocromo c/química , Geobacter/metabolismo , Hemo/química , Proteínas Mutantes/química , Periplasma/metabolismo , Fenilalanina/química , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Geobacter/crecimiento & desarrollo , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Fenilalanina/genética , Fenilalanina/metabolismo , Conformación Proteica , Termodinámica
14.
Biochem J ; 441(1): 179-87, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21861844

RESUMEN

Gs (Geobacter sulfurreducens) can transfer electrons to the exterior of its cells, a property that makes it a preferential candidate for the development of biotechnological applications. Its genome encodes over 100 cytochromes and, despite their abundance and key functional roles, to date there is no structural information for these proteins in solution. The trihaem cytochrome PpcA might have a crucial role in the conversion of electronic energy into protonmotive force, a fundamental step for ATP synthesis in the presence of extracellular electron acceptors. In the present study, 15N-labelled PpcA was produced and NMR spectroscopy was used to determine its solution structure in the fully reduced state, its backbone dynamics and the pH-dependent conformational changes. The structure obtained is well defined, with an average pairwise rmsd (root mean square deviation) of 0.25 Å (1 Å=0.1 nm) for the backbone atoms and 0.99 Å for all heavy atoms, and constitutes the first solution structure of a Gs cytochrome. The redox-Bohr centre responsible for controlling the electron/proton transfer was identified, as well as the putative interacting regions between PpcA and its redox partners. The solution structure of PpcA will constitute the foundation for studies aimed at mapping out in detail these interacting regions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocromos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Geobacter/metabolismo , Proteínas Bacterianas/genética , Citocromos/química , Citocromos/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
15.
Chem Sci ; 14(36): 9910-9922, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736643

RESUMEN

Previously, we found that linear quinol-containing ligands could allow manganese complexes to act as functional mimics of superoxide dismutase (SOD). The redox activity of the quinol enables even Zn(ii) complexes with these ligands to catalyze superoxide degradation. As we were investigating the abilities of manganese and iron complexes with 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane (H4qp4) to act as redox-responsive contrast agents for magnetic resonance imaging (MRI), we found evidence that they could also catalyze the dismutation of H2O2. Here, we investigate the antioxidant behavior of Mn(ii), Fe(ii), and Zn(ii) complexes with H4qp4. Although the H4qp4 complexes are relatively poor mimetics of SOD, with only the manganese complex displaying above-baseline catalysis, all three display extremely potent catalase activity. The ability of the Zn(ii) complex to catalyze the degradation of H2O2 demonstrates that the use of a redox-active ligand can enable redox-inactive metals to catalyze the decomposition of reactive oxygen species (ROS) besides superoxide. The results also demonstrate that the ligand framework can tune antioxidant activity towards specific ROS.

16.
J Biol Inorg Chem ; 17(1): 11-24, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21805398

RESUMEN

Cytochromes c(7) are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins-phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c(7) family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of (1)H-(15)N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.


Asunto(s)
Grupo Citocromo c/química , Grupo Citocromo c/metabolismo , Fenilalanina/metabolismo , Secuencia de Aminoácidos , Grupo Citocromo c/genética , Desulfuromonas/química , Geobacter/química , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Alineación de Secuencia , Termodinámica
17.
Sci Signal ; 14(684)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035143

RESUMEN

During cellular stress in the budding yeast Saccharomyces cerevisiae, an endoplasmic reticulum (ER)-resident dual kinase and RNase Ire1 splices an intron from HAC1 mRNA in the cytosol, thereby releasing its translational block. Hac1 protein then activates an adaptive cellular stress response called the unfolded protein response (UPR) that maintains ER homeostasis. The polarity-inducing protein kinases Kin1 and Kin2 contribute to HAC1 mRNA processing. Here, we showed that an RNA-protein complex that included the endocytic proteins Pal1 and Pal2 mediated HAC1 mRNA splicing downstream of Kin1 and Kin2. We found that Pal1 and Pal2 bound to the 3' untranslated region (3'UTR) of HAC1 mRNA, and a yeast strain lacking both Pal1 and Pal2 was deficient in HAC1 mRNA processing. We also showed that Kin1 and Kin2 directly phosphorylated Pal2, and that a nonphosphorylatable Pal2 mutant could not rescue the UPR defect in a pal1Δ pal2Δ strain. Thus, our work uncovers a Kin1/2-Pal2 signaling pathway that coordinates HAC1 mRNA processing and ER homeostasis.


Asunto(s)
Empalme del ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Respuesta de Proteína Desplegada , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Bacteriol ; 192(4): 1156-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20008068

RESUMEN

We present the crystal structure of the extracytoplasmic domain of the Bacillus subtilis PhoR sensor histidine kinase, part of a two-component system involved in adaptation to low environmental phosphate concentrations. In addition to the PhoR structure, we predict that the majority of the extracytoplasmic domains of B. subtilis sensor kinases will adopt a fold similar to the ubiquitous PAS domain.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Proteínas Quinasas/química , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia
19.
Biochem J ; 420(3): 485-92, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19351328

RESUMEN

Multihaem cytochromes that could form protein "nanowires" were identified in the Geobacter sulfurreducens genome, and represent a new type of multihaem cytochrome. The sequences of these proteins, two with 12 haems (GSU1996, GSU0592) and one with 27 haems (GSU2210), suggest that they are formed with domains homologous to the trihaem cytochrome c7. Although all three haems have bis-His co-ordination in cytochromes c7, in each domain of the above polymers, the haem equivalent to haem IV has His-Met co-ordination. We previously determined the structure and measured the macroscopic redox potential of one representative domain (domain C) of a dodecahaem cytochrome (GSU1996). In the present study, the microscopic redox properties of the individual haem groups of domain C were determined using NMR and UV-visible spectroscopies. The reduction potentials of the haems for the fully reduced and protonated protein are different from each other (haem I, -106 mV; haem III, -136 mV; and haem IV, -125 mV) and are strongly modulated by redox interactions. This result is rather surprising since the His-Met co-ordinated haem IV does not have the highest potential as was expected. The polypeptide environment of each haem group and the strong haem pairwise redox interactions must play a dominant role in controlling the individual haem potentials. The strong redox interactions between the haems extend the range of their operating potentials at physiological pH (haem I, -71 mV, haem III, -146 mV and haem IV, -110 mV). Such a modulation in haem potentials is likely to have a functional significance in the metabolism of G. sulfurreducens.


Asunto(s)
Grupo Citocromo c/química , Geobacter/química , Hemo/química , Termodinámica , Secuencia de Aminoácidos , Grupo Citocromo c/genética , Geobacter/genética , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Polímeros/química , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta
20.
Biochim Biophys Acta ; 1777(9): 1157-65, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18534185

RESUMEN

The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.


Asunto(s)
Citocromos/química , Geobacter/química , Hemo/química , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Oxidación-Reducción , Alineación de Secuencia , Solventes , Espectrofotometría Ultravioleta , Volumetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA