Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 54, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365718

RESUMEN

Bio-upcycling of plastics is an emerging alternative process that focuses on extracting value from a wide range of plastic waste streams. Such streams are typically too contaminated to be effectively processed using traditional recycling technologies. Medium-chain-length (mcl) diols and dicarboxylates (DCA) are major products of chemically or enzymatically depolymerized plastics, such as polyesters or polyethers. In this study, we enabled the efficient metabolism of mcl-diols and -DCA in engineered Pseudomonas putida as a prerequisite for subsequent bio-upcycling. We identified the transcriptional regulator GcdR as target for enabling metabolism of uneven mcl-DCA such as pimelate, and uncovered amino acid substitutions that lead to an increased coupling between the heterologous ß-oxidation of mcl-DCA and the native degradation of short-chain-length DCA. Adaptive laboratory evolution and subsequent reverse engineering unravelled two distinct pathways for mcl-diol metabolism in P. putida, namely via the hydroxy acid and subsequent native ß-oxidation or via full oxidation to the dicarboxylic acid that is further metabolized by heterologous ß-oxidation. Furthermore, we demonstrated the production of polyhydroxyalkanoates from mcl-diols and -DCA by a single strain combining all required metabolic features. Overall, this study provides a powerful platform strain for the bio-upcycling of complex plastic hydrolysates to polyhydroxyalkanoates and leads the path for future yield optimizations.


Asunto(s)
Polihidroxialcanoatos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Poliésteres/metabolismo , Ácidos Carboxílicos/metabolismo , Oxidación-Reducción
2.
Microb Cell Fact ; 22(1): 175, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679814

RESUMEN

BACKGROUND: Adaptive laboratory evolution (ALE) is known as a powerful tool for untargeted engineering of microbial strains and genomics research. It is particularly well suited for the adaptation of microorganisms to new environmental conditions, such as alternative substrate sources. Since the probability of generating beneficial mutations increases with the frequency of DNA replication, ALE experiments are ideally free of constraints on the required duration of cell proliferation. RESULTS: Here, we present an extended robotic workflow for performing long-term evolution experiments based on fully automated repetitive batch cultures (rbALE) in a well-controlled microbioreactor environment. Using a microtiter plate recycling approach, the number of batches and thus cell generations is technically unlimited. By applying the validated workflow in three parallel rbALE runs, ethanol utilization by Corynebacterium glutamicum ATCC 13032 (WT) was significantly improved. The evolved mutant strain WT_EtOH-Evo showed a specific ethanol uptake rate of 8.45 ± 0.12 mmolEtOH gCDW-1 h-1 and a growth rate of 0.15 ± 0.01 h-1 in lab-scale bioreactors. Genome sequencing of this strain revealed a striking single nucleotide variation (SNV) upstream of the ald gene (NCgl2698, cg3096) encoding acetaldehyde dehydrogenase (ALDH). The mutated basepair was previously predicted to be part of the binding site for the global transcriptional regulator GlxR, and re-engineering demonstrated that the identified SNV is key for enhanced ethanol assimilation. Decreased binding of GlxR leads to increased synthesis of the rate-limiting enzyme ALDH, which was confirmed by proteomics measurements. CONCLUSIONS: The established rbALE technology is generally applicable to any microbial strain and selection pressure that fits the small-scale cultivation format. In addition, our specific results will enable improved production processes with C. glutamicum from ethanol, which is of particular interest for acetyl-CoA-derived products.


Asunto(s)
Corynebacterium glutamicum , Procedimientos Quirúrgicos Robotizados , Corynebacterium glutamicum/genética , Flujo de Trabajo , Acetilcoenzima A , Etanol
3.
Microb Cell Fact ; 22(1): 71, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061714

RESUMEN

BACKGROUND: Amino acid production features of Corynebacterium glutamicum were extensively studied in the last two decades. Many metabolic pathways, regulatory and transport principles are known, but purely rational approaches often provide only limited progress in production optimization. We recently generated stable synthetic co-cultures, termed Communities of Niche-optimized Strains (CoNoS), that rely on cross-feeding of amino acids for growth. This setup has the potential to evolve strains with improved production by selection of faster growing communities. RESULTS: Here we performed adaptive laboratory evolution (ALE) with a CoNoS to identify mutations that are relevant for amino acid production both in mono- and co-cultures. During ALE with the CoNoS composed of strains auxotrophic for either L-leucine or L-arginine, we obtained a 23% growth rate increase. Via whole-genome sequencing and reverse engineering, we identified several mutations involved in amino acid transport that are beneficial for CoNoS growth. The L-leucine auxotrophic strain carried an expression-promoting mutation in the promoter region of brnQ (cg2537), encoding a branched-chain amino acid transporter in combination with mutations in the genes for the Na+/H+-antiporter Mrp1 (cg0326-cg0321). This suggested an unexpected link of Mrp1 to L-leucine transport. The L-arginine auxotrophic partner evolved expression-promoting mutations near the transcriptional start site of the yet uncharacterized operon argTUV (cg1504-02). By mutation studies and ITC, we characterized ArgTUV as the only L-arginine uptake system of C. glutamicum with an affinity of KD = 30 nM. Finally, deletion of argTUV in an L-arginine producer strain resulted in a faster and 24% higher L-arginine production in comparison to the parental strain. CONCLUSION: Our work demonstrates the power of the CoNoS-approach for evolution-guided identification of non-obvious production traits, which can also advance amino acid production in monocultures. Further rounds of evolution with import-optimized strains can potentially reveal beneficial mutations also in metabolic pathway enzymes. The approach can easily be extended to all kinds of metabolite cross-feeding pairings of different organisms or different strains of the same organism, thereby enabling the identification of relevant transport systems and other favorable mutations.


Asunto(s)
Aminoácidos , Corynebacterium glutamicum , Aminoácidos/metabolismo , Leucina/metabolismo , Técnicas de Cocultivo , Mutación , Arginina , Corynebacterium glutamicum/metabolismo , Ingeniería Metabólica/métodos
4.
Nucleic Acids Res ; 48(12): 6547-6562, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32453397

RESUMEN

Heme is a multifaceted molecule. While serving as a prosthetic group for many important proteins, elevated levels are toxic to cells. The complexity of this stimulus has shaped bacterial network evolution. However, only a small number of targets controlled by heme-responsive regulators have been described to date. Here, we performed chromatin affinity purification and sequencing to provide genome-wide insights into in vivo promoter occupancy of HrrA, the response regulator of the heme-regulated two-component system HrrSA of Corynebacterium glutamicum. Time-resolved profiling revealed dynamic binding of HrrA to more than 200 different genomic targets encoding proteins associated with heme biosynthesis, the respiratory chain, oxidative stress response and cell envelope remodeling. By repression of the extracytoplasmic function sigma factor sigC, which activates the cydABCD operon, HrrA prioritizes the expression of genes encoding the cytochrome bc1-aa3 supercomplex. This is also reflected by a significantly decreased activity of the cytochrome aa3 oxidase in the ΔhrrA mutant. Furthermore, our data reveal that HrrA also integrates the response to heme-induced oxidative stress by activating katA encoding the catalase. These data provide detailed insights in the systemic strategy that bacteria have evolved to respond to the versatile signaling molecule heme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Operón , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Factor sigma/metabolismo
5.
Metab Eng ; 68: 162-173, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34628038

RESUMEN

Evolutionary engineering is a powerful method to improve the performance of microbial cell factories, but can typically not be applied to enhance the production of chemicals due to the lack of an appropriate selection regime. We report here on a new strategy based on transcription factor-based biosensors, which directly couple production to growth. The growth of Corynebacterium glutamicum was coupled to the intracellular concentration of branched-chain amino acids, by integrating a synthetic circuit based on the Lrp biosensor upstream of two growth-regulating genes, pfkA and hisD. Modelling and experimental data highlight spatial separation as key strategy to limit the selection of 'cheater' strains that escaped the evolutionary pressure. This approach facilitated the isolation of strains featuring specific causal mutations enhancing amino acid production. We envision that this strategy can be applied with the plethora of known biosensors in various microbes, unlocking evolution as a feasible strategy to improve production of chemicals.


Asunto(s)
Técnicas Biosensibles , Corynebacterium glutamicum , Aminoácidos , Corynebacterium glutamicum/genética , Ingeniería Metabólica , Mutación
6.
Metab Eng ; 67: 29-40, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33965615

RESUMEN

Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant ß-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h-1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate-1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.


Asunto(s)
Acinetobacter , Polihidroxialcanoatos , Pseudomonas putida , Adipatos , Ingeniería Metabólica , Pseudomonas putida/genética
7.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741613

RESUMEN

Gene expression in the obligately aerobic acetic acid bacterium Gluconobacter oxydans responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR. The direct target genes of GoxR were determined by combining several approaches, including a transcriptome comparison of a ΔgoxR mutant with the wild-type strain and detection of in vivo GoxR binding sites by chromatin affinity purification and sequencing (ChAP-Seq). Prominent targets were the cioAB genes encoding a cytochrome bd oxidase with low O2 affinity, which were repressed by GoxR, and the pnt operon, which was activated by GoxR. The pnt operon encodes a transhydrogenase (pntA1A2B), an NADH-dependent oxidoreductase (GOX0313), and another oxidoreductase (GOX0314). Evidence was obtained for GoxR being active despite a high dissolved oxygen concentration in the medium. We suggest a model in which the very high respiration rates of G. oxydans due to periplasmic oxidations cause an oxygen-limited cytoplasm and insufficient reoxidation of NAD(P)H in the respiratory chain, leading to inhibited cytoplasmic carbohydrate degradation. GoxR-triggered induction of the pnt operon enhances fast interconversion of NADPH and NADH by the transhydrogenase and NADH reoxidation by the GOX0313 oxidoreductase via reduction of acetaldehyde formed by pyruvate decarboxylase to ethanol. In fact, small amounts of ethanol were formed by G. oxydans under oxygen-restricted conditions in a GoxR-dependent manner.IMPORTANCEGluconobacter oxydans serves as a cell factory for oxidative biotransformations based on membrane-bound dehydrogenases and as a model organism for elucidating the metabolism of acetic acid bacteria. Surprisingly, to our knowledge none of the more than 100 transcriptional regulators encoded in the genome of G. oxydans has been studied experimentally until now. In this work, we analyzed the function of a regulator named GoxR, which belongs to the FNR family. Members of this family serve as oxygen sensors by means of an oxygen-sensitive [4Fe-4S] cluster and typically regulate genes important for growth under anoxic conditions by anaerobic respiration or fermentation. Because G. oxydans has an obligatory aerobic respiratory mode of energy metabolism, it was tempting to elucidate the target genes regulated by GoxR. Our results show that GoxR affects the expression of genes that support the interconversion of NADPH and NADH and the NADH reoxidation by reduction of acetaldehyde to ethanol.


Asunto(s)
Ácido Acético/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Gluconobacter oxydans/genética , Factores de Transcripción/genética , Aerobiosis , Proteínas Bacterianas/metabolismo , Gluconobacter oxydans/metabolismo , Oxidación-Reducción , Factores de Transcripción/metabolismo
8.
Org Biomol Chem ; 19(13): 2912-2916, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33735355

RESUMEN

A modified Cp*Ru complex, equipped with a maleimide group, was covalently attached to a cysteine of an engineered variant of Ferric hydroxamate uptake protein component: A (FhuA). This synthetic metalloprotein catalyzed the intermolecular alkene-alkyne coupling of 3-butenol with 5-hexynenitrile. When compared with the protein-free Cp*Ru catalyst, the biohybrid catalyst produced the linear product with higher regioselectivity.

9.
Appl Microbiol Biotechnol ; 105(9): 3423-3456, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33856535

RESUMEN

Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


Asunto(s)
Ácido Acético , Acetobacteraceae , Acetobacteraceae/genética , Expresión Génica , Ingeniería Metabólica
10.
Appl Microbiol Biotechnol ; 105(18): 6835-6852, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34448898

RESUMEN

For the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first tight system for regulatable target gene expression became available based on the heterologous repressor-activator protein AraC from Escherichia coli and the target promoter ParaBAD. In this study, we tested pure repressor-based TetR- and LacI-dependent target gene expression in G. oxydans by applying the same plasmid backbone and construction principles that we have used successfully for the araC-ParaBAD system. When using a pBBR1MCS-5-based plasmid, the non-induced basal expression of the Tn10-based TetR-dependent expression system was extremely low. This allowed calculated induction ratios of up to more than 3500-fold with the fluorescence reporter protein mNeonGreen (mNG). The induction was highly homogeneous and tunable by varying the anhydrotetracycline concentration from 10 to 200 ng/mL. The already strong reporter gene expression could be doubled by inserting the ribosome binding site AGGAGA into the 3' region of the Ptet sequence upstream from mNG. Alternative plasmid constructs used as controls revealed a strong influence of transcription terminators and antibiotics resistance gene of the plasmid backbone on the resulting expression performance. In contrast to the TetR-Ptet-system, pBBR1MCS-5-based LacI-dependent expression from PlacUV5 always exhibited some non-induced basal reporter expression and was therefore tunable only up to 40-fold induction by IPTG. The leakiness of PlacUV5 when not induced was independent of potential read-through from the lacI promoter. Protein-DNA binding simulations for pH 7, 6, 5, and 4 by computational modeling of LacI, TetR, and AraC with DNA suggested a decreased DNA binding of LacI when pH is below 6, the latter possibly causing the leakiness of LacI-dependent systems hitherto tested in AAB. In summary, the expression performance of the pBBR1MCS-5-based TetR-Ptet system makes this system highly suitable for applications in G. oxydans and possibly in other AAB. KEY POINTS: • A pBBR1MCS-5-based TetR-Ptet system was tunable up to more than 3500-fold induction. • A pBBR1MCS-5-based LacI-PlacUV5 system was leaky and tunable only up to 40-fold. • Modeling of protein-DNA binding suggested decreased DNA binding of LacI at pH < 6.


Asunto(s)
Gluconobacter oxydans , Gluconobacter , Ácido Acético , Expresión Génica , Gluconobacter oxydans/genética , Plásmidos/genética
11.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32144105

RESUMEN

The response to iron limitation of the Gram-positive soil bacterium Corynebacterium glutamicum was analyzed with respect to secreted metabolites, the transcriptome, and the proteome. During growth in glucose minimal medium, iron limitation caused a shift from lactate to pyruvate as the major secreted organic acid complemented by l-alanine and 2-oxoglutarate. Transcriptome and proteome analyses revealed that a pronounced iron starvation response governed by the transcriptional regulators DtxR and RipA was detectable in the late, but not in the early, exponential-growth phase. A link between iron starvation and thiamine pyrophosphate (TPP) biosynthesis was uncovered by the strong upregulation of thiC As phosphomethylpyrimidine synthase (ThiC) contains an iron-sulfur cluster, limiting activities of the TPP-dependent pyruvate-2-oxoglutarate dehydrogenase supercomplex probably cause the excretion of pyruvate and 2-oxoglutarate. In line with this explanation, thiamine supplementation could strongly diminish the secretion of these acids. The upregulation of thiC and other genes involved in thiamine biosynthesis and transport is presumably due to TPP riboswitches present at the 5' end of the corresponding operons. The results obtained in this study provide new insights into iron homeostasis in C. glutamicum and demonstrate that the metabolic consequences of iron limitation can be due to the iron dependency of coenzyme biosynthesis.IMPORTANCE Iron is an essential element for most organisms but causes problems due to poor solubility under oxic conditions and due to toxicity by catalyzing the formation of reactive oxygen species (ROS). Therefore, bacteria have evolved complex regulatory networks for iron homeostasis aiming at a sufficient iron supply while minimizing ROS formation. In our study, the responses of the actinobacterium Corynebacterium glutamicum to iron limitation were analyzed, resulting in a detailed view on the processes involved in iron homeostasis in this model organism. In particular, we provide evidence that iron limitation causes TPP deficiency, presumably due to insufficient activity of the iron-dependent phosphomethylpyrimidine synthase (ThiC). TPP deficiency was deduced from the upregulation of genes controlled by a TPP riboswitch and secretion of metabolites caused by insufficient activity of the TPP-dependent enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. To our knowledge, the link between iron starvation and thiamine synthesis has not been elaborated previously.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/fisiología , Deficiencias de Hierro , ARN Mensajero/metabolismo , Tiamina/biosíntesis , Corynebacterium glutamicum/crecimiento & desarrollo , Proteoma , Transcriptoma
12.
Appl Microbiol Biotechnol ; 104(21): 9267-9282, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32974745

RESUMEN

The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the L-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters ß-glucuronidase and mNeonGreen, up to 480-fold induction with 1% L-arabinose, and tunability from 0.1 to 1% L-arabinose. In G. oxydans 621H, L-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in D-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. KEY POINTS: • We found the AraC-PBAD system from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC or l-arabinose, expression from PBAD was extremely low. • This araC-PBAD system could also be fully functional in other acetic acid bacteria.


Asunto(s)
Gluconobacter oxydans , Gluconobacter , Ácido Acético , Arabinosa , Escherichia coli/genética , Gluconobacter oxydans/genética , Plásmidos/genética
13.
J Bacteriol ; 201(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31358612

RESUMEN

The pyruvate dehydrogenase complex (PDHC) catalyzes the oxidative decarboxylation of pyruvate, yielding acetyl coenzyme A (acetyl-CoA) and CO2 The PDHC-deficient Corynebacterium glutamicum ΔaceE strain therefore lacks an important decarboxylation step in its central metabolism. Additional inactivation of pyc, encoding pyruvate carboxylase, resulted in a >15-h lag phase in the presence of glucose, while no growth defect was observed on gluconeogenetic substrates, such as acetate. Growth was successfully restored by deletion of ptsG, encoding the glucose-specific permease of the phosphotransferase system (PTS), thereby linking the observed phenotype to the increased sensitivity of the ΔaceE Δpyc strain to glucose catabolism. In this work, the ΔaceE Δpyc strain was used to systematically study the impact of perturbations of the intracellular CO2/HCO3- pool on growth and anaplerotic flux. Remarkably, all measures leading to enhanced CO2/HCO3- levels, such as external addition of HCO3-, increasing the pH, or rerouting metabolic flux via the pentose phosphate pathway, at least partially eliminated the lag phase of the ΔaceE Δpyc strain on glucose medium. In accordance with these results, inactivation of the urease enzyme, lowering the intracellular CO2/HCO3- pool, led to an even longer lag phase, accompanied by the excretion of l-valine and l-alanine. Transcriptome analysis, as well as an adaptive laboratory evolution experiment with the ΔaceE Δpyc strain, revealed the reduction of glucose uptake as a key adaptive measure to enhance growth on glucose-acetate mixtures. Taken together, our results highlight the significant impact of the intracellular CO2/HCO3- pool on metabolic flux distribution, which becomes especially evident in engineered strains exhibiting low endogenous CO2 production rates, as exemplified by PDHC-deficient strains.IMPORTANCE CO2 is a ubiquitous product of cellular metabolism and an essential substrate for carboxylation reactions. The pyruvate dehydrogenase complex (PDHC) catalyzes a central metabolic reaction contributing to the intracellular CO2/HCO3- pool in many organisms. In this study, we used a PDHC-deficient strain of Corynebacterium glutamicum, which additionally lacked pyruvate carboxylase (ΔaceE Δpyc). This strain featured a >15-h lag phase during growth on glucose-acetate mixtures. We used this strain to systematically assess the impact of alterations in the intracellular CO2/HCO3- pool on growth in glucose-acetate medium. Remarkably, all measures enhancing CO2/HCO3- levels successfully restored growth. These results emphasize the strong impact of the intracellular CO2/HCO3- pool on metabolic flux, especially in strains exhibiting low endogenous CO2 production rates.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Complejo Piruvato Deshidrogenasa/genética , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Fenotipo
14.
Biochemistry ; 58(41): 4207-4217, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31557000

RESUMEN

The potential of the frequently encountered (ßα)8-barrel fold to acquire new functions was tested by an approach combining random mutagenesis and selection in vivo. For this purpose, the genes encoding 52 different phosphate-binding (ßα)8-barrel proteins were subjected to error-prone PCR and cloned into an expression plasmid. The resulting mixed repertoire was used to transform different auxotrophic Escherichia coli strains, each lacking an enzyme with a phosphate-containing substrate. After plating of the different transformants on minimal medium, growth was observed only for two strains, lacking either the gene for the serine phosphatase SerB or the phosphoserine aminotransferase SerC. The same mutants of the E. coli genes nanE (encoding a putative N-acetylmannosamine-6-phosphate 2-epimerase) and pdxJ (encoding the pyridoxine 5'-phosphate synthase) were responsible for rescuing both ΔserB and ΔserC. Unexpectedly, the complementing NanE and PdxJ variants did not catalyze the SerB or SerC reactions in vitro. Instead, RT-qPCR, RNAseq, and transcriptome analysis showed that they rescue the deletions by enlisting the help of endogenous E. coli enzymes HisB and HisC through exclusive up-regulation of histidine operon transcription. While the promiscuous SerB activity of HisB is well-established, our data indicate that HisC is promiscuous for the SerC reaction, as well. The successful rescue of ΔserB and ΔserC through point mutations and recruitment of additional amino acids in NanE and PdxJ provides another example for the adaptability of the (ßα)8-barrel fold.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/genética , Proteínas Bacterianas/genética , Sitios de Unión , Carbohidrato Epimerasas/genética , Cristalización , Proteínas de Escherichia coli/genética , Histidinol-Fosfatasa/química , Ligasas/genética , Espectroscopía de Resonancia Magnética , Metaboloma , Fosfoserina/química , Plásmidos/genética , Mutación Puntual , Pliegue de Proteína , Estructura Secundaria de Proteína , Transaminasas/química , Transaminasas/genética
15.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31253674

RESUMEN

The fast-growing marine bacterium Vibrio natriegens represents an emerging strain for molecular biology and biotechnology. Genome sequencing and quantitative PCR analysis revealed that the first chromosome of V. natriegens ATCC 14048 contains two prophage regions (VNP1 and VNP2) that are both inducible by the DNA-damaging agent mitomycin C and exhibit spontaneous activation under standard cultivation conditions. Their activation was also confirmed by live cell imaging of an mCherry fusion to the major capsid proteins of VNP1 and VNP2. Transmission electron microscopy visualized the release of phage particles belonging to the Siphoviridae family into the culture supernatant. Freeing V. natriegens from its proviral load, followed by phenotypic characterization, revealed an improved robustness of the prophage-free variant toward DNA-damaging conditions, reduced cell lysis under hypo-osmotic conditions, and an increased pyruvate production compared to wild-type levels. Remarkably, the prophage-free strain outcompeted the wild type in a competitive growth experiment, emphasizing that this strain is a promising platform for future metabolic engineering approaches.IMPORTANCE The fast-growing marine bacterium Vibrio natriegens represents an emerging model host for molecular biology and biotechnology, featuring a reported doubling time of less than 10 minutes. In many bacterial species, viral DNA (prophage elements) may constitute a considerable fraction of the whole genome and may have detrimental effects on the growth and fitness of industrial strains. Genome analysis revealed the presence of two prophage regions in the V. natriegens genome that were shown to undergo spontaneous induction under standard cultivation conditions. In this study, we generated a prophage-free variant of V. natriegens Remarkably, the prophage-free strain exhibited a higher tolerance toward DNA damage and hypo-osmotic stress. Moreover, it was shown to outcompete the wild-type strain in a competitive growth experiment. In conclusion, our study presents the prophage-free variant of V. natriegens as a promising platform strain for future biotechnological applications.


Asunto(s)
Daño del ADN , Presión Osmótica , Profagos/fisiología , Vibrio/fisiología , Vibrio/virología
16.
BMC Microbiol ; 19(1): 179, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382874

RESUMEN

BACKGROUND: Key mechanisms of cell division and its regulation are well understood in model bacteria such as Escherichia coli and Bacillus subtilis. In contrast, current knowledge on the regulation of cell division in Actinobacteria is rather limited. FtsZ is one of the key players in this process, but nothing is known about its transcriptional regulation in Corynebacterium glutamicum, a model organism of the Corynebacteriales. RESULTS: In this study, we used DNA affinity chromatography to search for transcriptional regulators of ftsZ in C. glutamicum and identified the Cg1631 protein as candidate, which was named FtsR. Both deletion and overexpression of ftsR caused growth defects and an altered cell morphology. Plasmid-based expression of native ftsR or of homologs of the pathogenic relatives Corynebacterium diphtheriae and Mycobacterium tuberculosis in the ΔftsR mutant could at least partially reverse the mutant phenotype. Absence of ftsR caused decreased expression of ftsZ, in line with an activator function of FtsR. In vivo crosslinking followed by affinity purification of FtsR and next generation sequencing of the enriched DNA fragments confirmed the ftsZ promoter as in vivo binding site of FtsR and revealed additional potential target genes and a DNA-binding motif. Analysis of strains expressing ftsZ under control of the gluconate-inducible gntK promoter revealed that the phenotype of the ΔftsR mutant is not solely caused by reduced ftsZ expression, but involves further targets. CONCLUSIONS: In this study, we identified and characterized FtsR as the first transcriptional regulator of FtsZ described for C. glutamicum. Both the absence and the overproduction of FtsR had severe effects on growth and cell morphology, underlining the importance of this regulatory protein. FtsR and its DNA-binding site in the promoter region of ftsZ are highly conserved in Actinobacteria, which suggests that this regulatory mechanism is also relevant for the control of cell division in related Actinobacteria.


Asunto(s)
Actinobacteria/genética , Proteínas Bacterianas , División Celular/genética , Corynebacterium glutamicum/genética , Proteínas del Citoesqueleto , Regulación Bacteriana de la Expresión Génica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/citología , Corynebacterium glutamicum/crecimiento & desarrollo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Genes Bacterianos , Mycobacterium tuberculosis/genética
17.
Bioconjug Chem ; 30(3): 714-720, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30642174

RESUMEN

Adhesion promoting peptides have been reported to enable efficient enzyme immobilization on various material surfaces. Here we report the first immobilization of a synthetic Grubbs-Hoveyda (GH) type catalyst on two different materials (silica and polypropylene). To this end, the GH catalyst was coupled to an engineered (F16C) variant of the adhesion promoting peptide LCI through thiol-maleimide "click" reaction. Immobilization was performed in an oriented manner through the adhesion promoting peptide by simple incubation with the materials in water and subsequent washing with water and tetrahydrofuran. The immobilized GH catalyst was probed in ring-opening metathesis polymerization of a norbornene derivative to alter the surface properties in a layer-by-layer fashion.


Asunto(s)
Péptidos/química , Polimerizacion , Catálisis , Ciclización , Polipropilenos/química , Dióxido de Silicio/química , Propiedades de Superficie
18.
Proc Natl Acad Sci U S A ; 113(17): 4806-11, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27078093

RESUMEN

The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Corynebacterium/metabolismo , Ferritinas/metabolismo , Homeostasis/fisiología , Hierro/metabolismo , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional/fisiología
19.
BMC Genomics ; 19(1): 24, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29304737

RESUMEN

BACKGROUND: The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this α-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5'-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5´-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures. RESULTS: Sequencing of primary transcriptomes of G. oxydans revealed 2449 TSSs, which were classified according to their genomic context followed by identification of promoter and ribosome binding site motifs, analysis of 5´-UTRs including validation of predicted cis-regulatory elements and correction of start codons. 1144 (41%) of all genes were found to be expressed monocistronically, whereas 1634 genes were organized in 571 operons. Together, TSSs and whole transcriptome data were also used to identify novel intergenic (18), intragenic (328), and antisense transcripts (313). CONCLUSIONS: This study provides deep insights into the transcriptional landscapes of G. oxydans. The comprehensive transcriptome data, which we made publicly available, facilitate further analysis of promoters and other regulatory elements. This will support future approaches for rational strain development and targeted gene expression in G. oxydans. The corrections of start codons further improve the high quality genome reference and support future proteome analysis.


Asunto(s)
Genoma Bacteriano , Gluconobacter oxydans/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Proteínas Bacterianas/genética , Gluconobacter oxydans/crecimiento & desarrollo , Operón , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Sitio de Iniciación de la Transcripción
20.
BMC Genomics ; 19(1): 753, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30326828

RESUMEN

BACKGROUND: Gluconobacter oxydans is a strictly aerobic Gram-negative acetic acid bacterium used industrially for oxidative biotransformations due to its exceptional type of catabolism. It incompletely oxidizes a wide variety of carbohydrates regio- and stereoselectively in the periplasm using membrane-bound dehydrogenases with accumulation of the products in the medium. As a consequence, only a small fraction of the carbon and energy source enters the cell, resulting in a low biomass yield. Additionally, central carbon metabolism is characterized by the absence of a functional glycolysis and absence of a functional tricarboxylic acid (TCA) cycle. Due to these features, G. oxydans is a highly interesting model organism. Here we analyzed global mRNA decay in G. oxydans to describe its characteristic features and to identify short-lived mRNAs representing potential bottlenecks in the metabolism for further growth improvement by metabolic engineering. RESULTS: Using DNA microarrays we estimated the mRNA half-lives in G. oxydans. Overall, the mRNA half-lives ranged mainly from 3 min to 25 min with a global mean of 5.7 min. The transcripts encoding GroES and GroEL required for proper protein folding ranked at the top among transcripts exhibiting both long half-lives and high abundance. The F-type H+-ATP synthase transcripts involved in energy metabolism ranked among the transcripts with the shortest mRNA half-lives. RNAseq analysis revealed low expression levels for genes of the incomplete TCA cycle and also the mRNA half-lives of several of those were short and below the global mean. The mRNA decay analysis also revealed an apparent instability of full-length 23S rRNA. Further analysis of the ribosome-associated rRNA revealed a 23S rRNA fragmentation pattern exhibiting new cleavage regions in 23S rRNAs which were previously not known. CONCLUSIONS: The very short mRNA half-lives of the H+-ATP synthase, which is likely responsible for the ATP-proton motive force interconversion in G. oxydans under many or most conditions, is notably in contrast to mRNA decay data from other bacteria. Together with the short mRNA half-lives and low expression of some other central metabolic genes it could limit intended improvements of G. oxydans' biomass yield by metabolic engineering. Also, further studies are needed to unravel the multistep process of the 23S rRNA fragmentation in G. oxydans.


Asunto(s)
Gluconobacter oxydans/genética , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Semivida , ARN Mensajero/química , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA