Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 606(7915): 761-768, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551511

RESUMEN

SARS-CoV-2, like other coronaviruses, builds a membrane-bound replication organelle to enable RNA replication1. The SARS-CoV-2 replication organelle is composed of double-membrane vesicles (DMVs) that are tethered to the endoplasmic reticulum (ER) by thin membrane connectors2, but the viral proteins and the host factors involved remain unknown. Here we identify the viral non-structural proteins (NSPs) that generate the SARS-CoV-2 replication organelle. NSP3 and NSP4 generate the DMVs, whereas NSP6, through oligomerization and an amphipathic helix, zippers ER membranes and establishes the connectors. The NSP6(ΔSGF) mutant, which arose independently in the Alpha, Beta, Gamma, Eta, Iota and Lambda variants of SARS-CoV-2, behaves as a gain-of-function mutant with a higher ER-zippering activity. We identified three main roles for NSP6: first, to act as a filter in communication between the replication organelle and the ER, by allowing lipid flow but restricting the access of ER luminal proteins to the DMVs; second, to position and organize DMV clusters; and third, to mediate contact with lipid droplets (LDs) through the LD-tethering complex DFCP1-RAB18. NSP6 thus acts as an organizer of DMV clusters and can provide a selective means of refurbishing them with LD-derived lipids. Notably, both properly formed NSP6 connectors and LDs are required for the replication of SARS-CoV-2. Our findings provide insight into the biological activity of NSP6 of SARS-CoV-2 and of other coronaviruses, and have the potential to fuel the search for broad antiviral agents.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , COVID-19/virología , Proteínas Portadoras , Línea Celular , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Humanos , Gotas Lipídicas , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , Proteínas no Estructurales Virales/metabolismo , Proteínas de Unión al GTP rab
2.
Traffic ; 25(1): e12920, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37886910

RESUMEN

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.


Asunto(s)
Degeneración Hepatolenticular , Animales , Humanos , Degeneración Hepatolenticular/genética , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Hepatocitos/metabolismo
3.
Cell ; 133(6): 1055-67, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18555781

RESUMEN

The prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction--that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partitioned domains with no cargo privileged for export based on its time of entry into the system. Given these results, we constructed a new model of intra-Golgi transport that involves rapid partitioning of enzymes and transmembrane cargo between two lipid phases combined with relatively rapid exchange among cisternae. Simulation and experimental testing of this rapid partitioning model reproduced all the key characteristics of the Golgi apparatus, including polarized lipid and protein gradients, exponential cargo export kinetics, and cargo waves.


Asunto(s)
Aparato de Golgi/metabolismo , Transporte de Proteínas , Animales , Brefeldino A/farmacología , Células COS , Línea Celular , Chlorocebus aethiops , Recuperación de Fluorescencia tras Fotoblanqueo , Aparato de Golgi/ultraestructura , Humanos , Cinética , Modelos Biológicos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 117(51): 32453-32463, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288711

RESUMEN

Pathogenic mutations in the copper transporter ATP7B have been hypothesized to affect its protein interaction landscape contributing to loss of function and, thereby, to hepatic copper toxicosis in Wilson disease. Although targeting mutant interactomes was proposed as a therapeutic strategy, druggable interactors for rescue of ATP7B mutants remain elusive. Using proteomics, we found that the frequent H1069Q substitution promotes ATP7B interaction with HSP70, thus accelerating endoplasmic reticulum (ER) degradation of the mutant protein and consequent copper accumulation in hepatic cells. This prompted us to use an HSP70 inhibitor as bait in a bioinformatics search for structurally similar Food and Drug Administration-approved drugs. Among the hits, domperidone emerged as an effective corrector that recovered trafficking and function of ATP7B-H1069Q by impairing its exposure to the HSP70 proteostatic network. Our findings suggest that HSP70-mediated degradation can be safely targeted with domperidone to rescue ER-retained ATP7B mutants and, hence, to counter the onset of Wilson disease.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Domperidona/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Degeneración Hepatolenticular/genética , Bencimidazoles/química , Bencimidazoles/farmacología , Células Cultivadas , Cobre/metabolismo , Domperidona/química , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Células Hep G2 , Hepatocitos/metabolismo , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/metabolismo , Degeneración Hepatolenticular/patología , Humanos , Mutación Missense , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Proteómica/métodos
5.
J Neurosci ; 41(2): 215-233, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33208468

RESUMEN

Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.


Asunto(s)
Cobre/fisiología , Aparato de Golgi/fisiología , Homeostasis/fisiología , Biogénesis de Organelos , Sinapsis/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Cobre/toxicidad , ATPasas Transportadoras de Cobre/genética , Drosophila , Estimulación Eléctrica , Espacio Extracelular/metabolismo , Femenino , Humanos , Masculino , ARN Interferente Pequeño , Sinapsis/ultraestructura
6.
Gastroenterology ; 156(4): 1173-1189.e5, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30452922

RESUMEN

BACKGROUND & AIMS: Wilson disease (WD) is an inherited disorder of copper metabolism that leads to copper accumulation and toxicity in the liver and brain. It is caused by mutations in the adenosine triphosphatase copper transporting ß gene (ATP7B), which encodes a protein that transports copper from hepatocytes into the bile. We studied ATP7B-deficient cells and animals to identify strategies to decrease copper toxicity in patients with WD. METHODS: We used RNA-seq to compare gene expression patterns between wild-type and ATP7B-knockout HepG2 cells exposed to copper. We collected blood and liver tissues from Atp7b-/- and Atp7b+/- (control) rats (LPP) and mice; some mice were given 5 daily injections of an autophagy inhibitor (spautin-1) or vehicle. We obtained liver biopsies from 2 patients with WD in Italy and liver tissues from patients without WD (control). Liver tissues were analyzed by immunohistochemistry, immunofluorescence, cell viability, apoptosis assays, and electron and confocal microscopy. Proteins were knocked down in cell lines using small interfering RNAs. Levels of copper were measured in cell lysates, blood samples, liver homogenates, and subcellular fractions by spectroscopy. RESULTS: After exposure to copper, ATP7B-knockout cells had significant increases in the expression of 103 genes that regulate autophagy (including MAP1LC3A, known as LC3) compared with wild-type cells. Electron and confocal microscopy visualized more autophagic structures in the cytoplasm of ATP7B-knockout cells than wild-type cells after copper exposure. Hepatocytes in liver tissues from patients with WD and from Atp7b-/- mice and rats (but not controls) had multiple autophagosomes. In ATP7B-knockout cells, mammalian target of rapamycin (mTOR) had decreased activity and was dissociated from lysosomes; this resulted in translocation of the mTOR substrate transcription factor EB to the nucleus and activation of autophagy-related genes. In wild-type HepG2 cells (but not ATP7B-knockout cells), exposure to copper and amino acids induced recruitment of mTOR to lysosomes. Pharmacologic inhibitors of autophagy or knockdown of autophagy proteins ATG7 and ATG13 induced and accelerated the death of ATP7B-knockout HepG2 cells compared with wild-type cells. Autophagy protected ATP7B-knockout cells from copper-induced death. CONCLUSION: ATP7B-deficient hepatocytes, such as in those in patients with WD, activate autophagy in response to copper overload to prevent copper-induced apoptosis. Agents designed to activate this autophagic pathway might decrease copper toxicity in patients with WD.


Asunto(s)
Apoptosis , Autofagia/genética , ATPasas Transportadoras de Cobre/genética , Hepatocitos/fisiología , Degeneración Hepatolenticular/fisiopatología , Hígado/fisiopatología , Animales , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Bencilaminas/farmacología , Supervivencia Celular , Cobre/toxicidad , ATPasas Transportadoras de Cobre/metabolismo , Femenino , Células Hep G2 , Hepatocitos/ultraestructura , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica , Mitocondrias/ultraestructura , Transporte de Proteínas , Quinazolinas/farmacología , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
7.
J Cell Sci ; 130(24): 4155-4167, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093023

RESUMEN

Many secretory cells increase the synthesis and secretion of cargo proteins in response to specific stimuli. How cells couple increased cargo load with a coordinate rise in secretory capacity to ensure efficient transport is not well understood. We used thyroid cells stimulated with thyrotropin (TSH) to demonstrate a coordinate increase in the production of thyroid-specific cargo proteins and ER-Golgi transport factors, and a parallel expansion of the Golgi complex. TSH also increased expression of the CREB3L1 transcription factor, which alone caused amplified transport factor levels and Golgi enlargement. Furthermore, CREB3L1 potentiated the TSH-induced increase in Golgi volume. A dominant-negative CREB3L1 construct hampered the ability of TSH to induce Golgi expansion, implying that this transcription factor contributes to Golgi expansion. Our findings support a model in which CREB3L1 acts as a downstream effector of TSH to regulate the expression of cargo proteins, and simultaneously increases the synthesis of transport factors and the expansion of the Golgi to synchronize the rise in cargo load with the amplified capacity of the secretory pathway.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Aparato de Golgi/genética , Proteínas del Tejido Nervioso/genética , Glándula Tiroides/metabolismo , Tirotropina/genética , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/genética , Aparato de Golgi/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Vías Secretoras/genética , Tirotropina/metabolismo
8.
J Biol Chem ; 292(40): 16605-16615, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28860195

RESUMEN

SLC30A10 and SLC39A14 are manganese efflux and influx transporters, respectively. Loss-of-function mutations in genes encoding either transporter induce hereditary manganese toxicity. Patients have elevated manganese in the blood and brain and develop neurotoxicity. Liver manganese is increased in patients lacking SLC30A10 but not SLC39A14. These organ-specific changes in manganese were recently recapitulated in knockout mice. Surprisingly, Slc30a10 knockouts also had elevated thyroid manganese and developed hypothyroidism. To determine the mechanisms of manganese-induced hypothyroidism and understand how SLC30A10 and SLC39A14 cooperatively mediate manganese detoxification, here we produced Slc39a14 single and Slc30a10/Slc39a14 double knockout mice and compared their phenotypes with that of Slc30a10 single knockouts. Compared with wild-type controls, Slc39a14 single and Slc30a10/Slc39a14 double knockouts had higher manganese levels in the blood and brain but not in the liver. In contrast, Slc30a10 single knockouts had elevated manganese levels in the liver as well as in the blood and brain. Furthermore, SLC30A10 and SLC39A14 localized to the canalicular and basolateral domains of polarized hepatic cells, respectively. Thus, transport activities of both SLC39A14 and SLC30A10 are required for hepatic manganese excretion. Compared with Slc30a10 single knockouts, Slc39a14 single and Slc30a10/Slc39a14 double knockouts had lower thyroid manganese levels and normal thyroid function. Moreover, intrathyroid thyroxine levels of Slc30a10 single knockouts were lower than those of controls. Thus, the hypothyroidism phenotype of Slc30a10 single knockouts is induced by elevated thyroid manganese, which blocks thyroxine production. These findings provide new insights into the mechanisms of manganese detoxification and manganese-induced thyroid dysfunction.


Asunto(s)
Proteínas de Transporte de Catión/deficiencia , Hipotiroidismo , Manganeso/metabolismo , Tiroxina/biosíntesis , Animales , Proteínas de Transporte de Catión/metabolismo , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados
9.
Hum Mol Genet ; 24(23): 6811-25, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26420842

RESUMEN

Stargardt disease (STGD1) due to mutations in the large ABCA4 gene is the most common inherited macular degeneration in humans. We have shown that dual adeno-associated viral (AAV) vectors effectively transfer ABCA4 to the retina of Abca4-/- mice. However, they express both lower levels of transgene compared with a single AAV and truncated proteins. To increase productive dual AAV concatemerization, which would overcome these limitations, we have explored the use of either various regions of homology or heterologous inverted terminal repeats (ITR). In addition, we tested the ability of various degradation signals to decrease the expression of truncated proteins. We found the highest levels of transgene expression using regions of homology based on either alkaline phosphatase or the F1 phage (AK). The use of heterologous ITR does not decrease the levels of truncated proteins relative to full-length ABCA4 and impairs AAV vector production. Conversely, the inclusion of the CL1 degradation signal results in the selective degradation of truncated proteins from the 5'-half without affecting full-length protein production. Therefore, we developed dual AAV hybrid ABCA4 vectors including homologous ITR2, the photoreceptor-specific G protein-coupled receptor kinase 1 promoter, the AK region of homology and the CL1 degradation signal. We show that upon subretinal administration these vectors are both safe in pigs and effective in Abca4-/- mice. Our data support the use of improved dual AAV vectors for gene therapy of STGD1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Degeneración Macular/congénito , Administración Oftálmica , Animales , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/administración & dosificación , Células HEK293 , Humanos , Degeneración Macular/genética , Degeneración Macular/terapia , Ratones , Retina/metabolismo , Enfermedad de Stargardt , Porcinos , Secuencias Repetidas Terminales , Transgenes
10.
Hepatology ; 63(6): 1842-59, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26660341

RESUMEN

UNLABELLED: Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels. CONCLUSION: Our findings indicate p38 and c-Jun N-terminal kinase as intriguing targets for correction of WD-causing mutants and, hence, as potential candidates, which could be evaluated for the development of novel therapeutic strategies to combat WD. (Hepatology 2016;63:1842-1859).


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Transporte de Catión/genética , Degeneración Hepatolenticular/genética , Sistema de Señalización de MAP Quinasas , Cobre/metabolismo , ATPasas Transportadoras de Cobre , Células HeLa , Células Hep G2 , Degeneración Hepatolenticular/metabolismo , Humanos , Hígado/metabolismo , Mutación , Vías Secretoras
11.
EMBO J ; 31(20): 3976-90, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22909819

RESUMEN

We have isolated a membrane fraction enriched in a class of transport carriers that form at the trans Golgi network (TGN) and are destined for the cell surface in HeLa cells. Protein kinase D (PKD) is required for the biogenesis of these carriers that contain myosin II, Rab6a, Rab8a, and synaptotagmin II, as well as a number of secretory and plasma membrane-specific cargoes. Our findings reveal a requirement for myosin II in the migration of these transport carriers but not in their biogenesis per se. Based on the cargo secreted by these carriers we have named them CARTS for CARriers of the TGN to the cell Surface. Surprisingly, CARTS are distinct from the carriers that transport vesicular stomatitis virus (VSV)-G protein and collagen I from the TGN to the cell surface. Altogether, the identification of CARTS provides a valuable means to understand TGN to cell surface traffic.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Vesículas Transportadoras/clasificación , Red trans-Golgi/metabolismo , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Miosina Tipo II/fisiología , Proteína Quinasa C/metabolismo , Sinaptotagmina II/metabolismo , Vesículas Transportadoras/fisiología , Vesículas Transportadoras/ultraestructura , Proteínas de Unión al GTP rab/metabolismo
12.
EMBO J ; 31(24): 4535-46, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23178595

RESUMEN

Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D-ceramide-C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D-ceramide-C6-treated HeLa cells revealed an increase in the levels of C6-sphingomyelin, C6-glucosylceramide, and diacylglycerol. D-ceramide-C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D-ceramide-C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6-sphingomyelin prevented liquid-ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes.


Asunto(s)
Aparato de Golgi/química , Aparato de Golgi/fisiología , Lípidos de la Membrana/análisis , Microdominios de Membrana/fisiología , Proteínas/metabolismo , Esfingomielinas/metabolismo , Vesículas Transportadoras/fisiología , Ceramidas/farmacología , Diglicéridos , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Lípidos de la Membrana/aislamiento & purificación , Microdominios de Membrana/química , Microscopía Electrónica , Microscopía Fluorescente , Oligonucleótidos/genética , Interferencia de ARN , Espectrometría de Fluorescencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Vesículas Transportadoras/química
13.
J Cell Sci ; 127(Pt 5): 977-93, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24413173

RESUMEN

Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.


Asunto(s)
Clatrina/metabolismo , Endocitosis , Fosfolipasas A2 Grupo IV/fisiología , Secuencia de Aminoácidos , Señalización del Calcio , Endosomas/metabolismo , Fosfolipasas A2 Grupo IV/química , Células HeLa , Humanos , Hidrólisis , Datos de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas
14.
J Cell Sci ; 126(Pt 24): 5566-77, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24101730

RESUMEN

The mitochondrial influx and efflux of Ca(2+) play a relevant role in cytosolic and mitochondrial Ca(2+) homeostasis, and contribute to the regulation of mitochondrial functions in neurons. The mitochondrial Na(+)/Ca(2+) exchanger, which was first postulated in 1974, has been primarily investigated only from a functional point of view, and its identity and localization in the mitochondria have been a matter of debate over the past three decades. Recently, a Li(+)-dependent Na(+)/Ca(2+) exchanger extruding Ca(2+) from the matrix has been found in the inner mitochondrial membrane of neuronal cells. However, evidence has been provided that the outer membrane is impermeable to Ca(2+) efflux into the cytoplasm. In this study, we demonstrate for the first time that the nuclear-encoded NCX3 isoform (1) is located on the outer mitochondrial membrane (OMM) of neurons; (2) colocalizes and immunoprecipitates with AKAP121 (also known as AKAP1), a member of the protein kinase A anchoring proteins (AKAPs) present on the outer membrane; (3) extrudes Ca(2+) from mitochondria through AKAP121 interaction in a PKA-mediated manner, both under normoxia and hypoxia; and (4) improves cell survival when it works in the Ca(2+) efflux mode at the level of the OMM. Collectively, these results suggest that, in neurons, NCX3 regulates mitochondrial Ca(2+) handling from the OMM through an AKAP121-anchored signaling complex, thus promoting cell survival during hypoxia.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , Neuronas/fisiología , Intercambiador de Sodio-Calcio/fisiología , Animales , Muerte Celular , Hipoxia de la Célula , Línea Celular , Supervivencia Celular , Cricetinae , Perros , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Ratas
15.
J Inherit Metab Dis ; 36(2): 363-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22971959

RESUMEN

Mucopolysaccharidosis type VI (MPS VI) is a severe lysosomal storage disorder without central nervous system involvement caused by arylsulfatase B (ARSB) deficiency. MPS VI is characterized by dysostosis multiplex, corneal clouding, heart valve defects and urinary excretion of glycosaminoglycans (GAGs). The current treatment for MPS VI is enzyme replacement therapy (ERT) which has limited efficacy on bone, joints and heart valve disease, as well as high costs. A potential therapeutic approach for the subgroup of MPS VI patients that carry nonsense mutations is to enhance stop-codon read-through, using small molecules, to restore production of the full-length ARSB protein. In this study we investigated whether two compounds known to induce stop codon read-through, the aminoglycoside gentamicin and PTC124, can promote read-through of four different ARSB nonsense mutations (p.R315X, p.R327X, p.Q456X and p.Q503X) associated with MPS VI and enable the synthesis of full-length functional ARSB protein in patients fibroblast cell lines. Our study demonstrates that PTC124 but not gentamicin, increases the level of ARSB activity in three MPS VI patient fibroblast cell lines. In two of them the levels of ARSB activity obtained were significantly higher than in untreated cells, reaching ≤2.5 % of those detected in wild-type fibroblasts and resulting in significant reduction of lysosomal size. Since even small increases in enzyme activity can dramatically influence the clinical phenotype of MPS VI, our study suggests that pharmacological read-through may be combined with ERT potentially increasing therapeutic efficacy in those patients bearing nonsense ARSB mutations.


Asunto(s)
Codón sin Sentido , Codón de Terminación/efectos de los fármacos , Gentamicinas/farmacología , Mucopolisacaridosis VI/tratamiento farmacológico , Mucopolisacaridosis VI/genética , N-Acetilgalactosamina-4-Sulfatasa/genética , Oxadiazoles/farmacología , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Mucopolisacaridosis VI/enzimología
16.
Proc Natl Acad Sci U S A ; 107(14): 6158-63, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20332207

RESUMEN

Golgi-modifying properties of the spongian diterpene macfarlandin E (MacE) and a synthetic analog, t-Bu-MacE, containing its 2,7-dioxabicyclo[3.2.1]octan-3-one moiety are reported. Natural product screening efforts identified MacE as inducing a novel morphological change in Golgi structure defined by ribbon fragmentation with maintenance of the resulting Golgi fragments in the pericentriolar region. t-Bu-MacE, which possesses the substituted 2,7-dioxabicyclo[3.2.1]octan-3-one but contains a tert-butyl group in place of the hydroazulene subunit of MacE, was prepared by chemical synthesis. Examination of the Golgi-modifying properties of MacE, t-Bu-MacE, and several related structures revealed that the entire oxygen-rich bridged-bicyclic fragment is required for induction of this unique Golgi organization phenotype. Further characterization of MacE-induced Golgi modification showed that protein secretion is inhibited, with no effect on the actin or microtubule cytoskeleton being observed. The conversion of t-Bu-MacE and a structurally related des-acetoxy congener to substituted pyrroles in the presence of primary amines in protic solvent at ambient temperatures suggests that covalent modification might be involved in the Golgi-altering activity of MacE.


Asunto(s)
Azulenos/síntesis química , Azulenos/farmacología , Compuestos Bicíclicos con Puentes/química , Diterpenos/síntesis química , Diterpenos/farmacología , Aparato de Golgi/efectos de los fármacos , Cetonas/química , Aminas/química , Animales , Línea Celular , Aparato de Golgi/ultraestructura , Humanos , Microscopía Electrónica , Estructura Molecular , Oxidación-Reducción , Ratas
17.
Hum Mol Genet ; 19(24): 4871-85, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20876612

RESUMEN

Mucopolysaccharidosis type II (MPSII), or Hunter syndrome, is a devastating disorder associated with a shortened life expectancy. Patients affected by MPSII have a variety of symptoms that affect all organs of the body and may include progressive cognitive impairment. MPSII is due to inactivity of the enzyme iduronate-2-sulfatase (IDS), which results in the accumulation of storage material in the lysosomes, such as dermatan and heparan sulfates, with consequent cell degeneration in all tissues including, in the severe phenotype, neurodegeneration in the central nervous system (CNS). To date, the only treatment available is systemic infusion of IDS, which ameliorates exclusively certain visceral defects. Therefore, it is important to simultaneously treat the visceral and CNS defects of the MPSII patients. Here, we have developed enzyme replacement therapy (ERT) protocols in a mouse model that allow the IDS to reach the brain, with the substantial correction of the CNS phenotype and of the neurobehavioral features. Treatments were beneficial even in adult and old MPSII mice, using relatively low doses of infused IDS over long intervals. This study demonstrates that CNS defects of MPSII mice can be treated by systemic ERT, providing the potential for development of an effective treatment for MPSII patients.


Asunto(s)
Encéfalo/patología , Terapia de Reemplazo Enzimático , Iduronato Sulfatasa/uso terapéutico , Mucopolisacaridosis II/terapia , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Iduronato Sulfatasa/sangre , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Actividad Motora/fisiología , Mucopolisacaridosis II/sangre , Mucopolisacaridosis II/fisiopatología , Especificidad de Órganos , Prueba de Desempeño de Rotación con Aceleración Constante
18.
Hum Mol Genet ; 19(10): 1985-97, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20172860

RESUMEN

Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the 'nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.


Asunto(s)
Cilios/metabolismo , Riñón/metabolismo , Mucoproteínas/metabolismo , Mutación/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Adulto , Animales , Anticuerpos/inmunología , Biopsia , Western Blotting , División Celular , Células Cultivadas , Niño , Cilios/ultraestructura , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Humanos , Riñón/patología , Riñón/ultraestructura , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Mucoproteínas/inmunología , Proteínas Mutantes/metabolismo , Transporte de Proteínas , Transfección , Uromodulina , Adulto Joven
19.
PLoS Biol ; 7(9): e1000194, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19753100

RESUMEN

The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A(2) (PLA(2))-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca(2+)-dependent, cytosolic PLA(2) (cPLA(2)alpha) onto the Golgi complex itself, and that this cPLA(2)alpha is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA(2)alpha has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA(2)alpha as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.


Asunto(s)
Aparato de Golgi/enzimología , Fosfolipasas A2 Grupo IV/metabolismo , Animales , Calcio/metabolismo , Perros , Aparato de Golgi/ultraestructura , Fosfolipasas A2 Grupo IV/genética , Células HeLa , Humanos , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Vías Secretoras , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo
20.
Cells ; 11(2)2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35053335

RESUMEN

ATP7B is a hepato-specific Golgi-located ATPase, which plays a key role in the regulation of copper (Cu) homeostasis and signaling. In response to elevated Cu levels, ATP7B traffics from the Golgi to endo-lysosomal structures, where it sequesters excess copper and further promotes its excretion to the bile at the apical surface of hepatocytes. In addition to liver, high ATP7B expression has been reported in tumors with elevated resistance to platinum (Pt)-based chemotherapy. Chemoresistance to Pt drugs represents the current major obstacle for the treatment of large cohorts of cancer patients. Although the mechanisms underlying Pt-tolerance are still ambiguous, accumulating evidence suggests that lysosomal sequestration of Pt drugs by ion transporters (including ATP7B) might significantly contribute to drug resistance development. In this context, signaling mechanisms regulating the expression of transporters such as ATP7B are of great importance. Considering this notion, we investigated whether ATP7B expression in Pt-resistant cells might be driven by transcription factor EB (TFEB), a master regulator of lysosomal gene transcription. Using resistant ovarian cancer IGROV-CP20 cells, we found that TFEB directly binds to the predicted coordinated lysosomal expression and regulation (CLEAR) sites in the proximal promoter and first intron region of ATP7B upon Pt exposure. This binding accelerates transcription of luciferase reporters containing ATP7B CLEAR regions, while suppression of TFEB inhibits ATP7B expression and stimulates cisplatin toxicity in resistant cells. Thus, these data have uncovered a Pt-dependent transcriptional mechanism that contributes to cancer chemoresistance and might be further explored for therapeutic purposes.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , ATPasas Transportadoras de Cobre/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Platino (Metal)/farmacología , Secuencia de Bases , Línea Celular Tumoral , ATPasas Transportadoras de Cobre/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Platino (Metal)/toxicidad , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA