Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Infect Dis ; 230(2): 455-466, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38324766

RESUMEN

BACKGROUND: MF59-adjuvanted gB subunit (gB/MF59) vaccine demonstrated approximately 50% efficacy against human cytomegalovirus (HCMV) acquisition in multiple clinical trials, suggesting that efforts to improve this vaccine design might yield a vaccine suitable for licensure. METHODS: A messenger RNA (mRNA)-based vaccine candidate encoding HCMV gB and pentameric complex (PC), mRNA-1647, is currently in late-stage efficacy trials. However, its immunogenicity has not been compared to the partially effective gB/MF59 vaccine. We assessed neutralizing and Fc-mediated immunoglobulin G (IgG) effector antibody responses induced by mRNA-1647 in both HCMV-seropositive and -seronegative vaccinees from a first-in-human clinical trial through 1 year following third vaccination using a systems serology approach. Furthermore, we compared peak anti-gB antibody responses in seronegative mRNA-1647 vaccinees to that of seronegative gB/MF59 vaccine recipients. RESULTS: mRNA-1647 vaccination elicited and boosted HCMV-specific IgG responses in seronegative and seropositive vaccinees, respectively, including neutralizing and Fc-mediated effector antibody responses. gB-specific IgG responses were lower than PC-specific IgG responses. gB-specific IgG and antibody-dependent cellular phagocytosis responses were lower than those elicited by gB/MF59. However, mRNA-1647 elicited higher neutralization and antibody-dependent cellular cytotoxicity (ADCC) responses. CONCLUSIONS: Overall, mRNA-1647 vaccination induced polyfunctional and durable HCMV-specific antibody responses, with lower gB-specific IgG responses but higher neutralization and ADCC responses compared to the gB/MF59 vaccine. CLINICAL TRIALS REGISTRATION: NCT03382405 (mRNA-1647) and NCT00133497 (gB/MF59).


Asunto(s)
Adyuvantes Inmunológicos , Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Citomegalovirus , Polisorbatos , Escualeno , Vacunas de ARNm , Humanos , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Citomegalovirus/inmunología , Citomegalovirus/genética , Infecciones por Citomegalovirus/prevención & control , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Vacunas contra Citomegalovirus/administración & dosificación , Vacunas contra Citomegalovirus/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/inmunología , Polisorbatos/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/inmunología , Escualeno/administración & dosificación , Escualeno/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética
2.
Mucosal Immunol ; 17(4): 692-699, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38677592

RESUMEN

Immunoglobulin A (IgA) is the predominant mucosal antibody class with both anti- and pro-inflammatory roles1-3. However, the specific role of the IgA receptor cluster of differentiation (CD)89, expressed by a subset of natural killer (NK) cells, is poorly explored. We found that CD89 protein expression on circulating NK cells is infrequent in humans and rhesus macaques, but transcriptomic analysis showed ubiquitous CD89 expression, suggesting an inducible phenotype. Interestingly, CD89+ NK cells were more frequent in cord blood and mucosae, indicating a putative IgA-mediated NK cell function in the mucosae and infant immune system. CD89+ NK cells signaled through upregulated CD3 zeta chain (CD3ζ), spleen tyrosine kinase (Syk), zeta chain-associated protein kinase 70 (ZAP70), and signaling lymphocytic activation molecule family 1 (SLAMF1), but also showed high expression of inhibitory receptors such as killer cell lectin-like receptor subfamily G (KLRG1) and reduced activating NKp46 and NKp30. CD89-based activation or antibody-mediated cellular cytotoxicity with monomeric IgA1 reduced NK cell functions, while antibody-mediated cellular cytotoxicity with combinations of IgG and IgA2 was enhanced compared to IgG alone. These data suggest that functional CD89+ NK cells survey mucosal sites, but CD89 likely serves as regulatory receptor which can be further modulated depending on IgA and IgG subclass. Although the full functional niche of CD89+ NK cells remains unexplored, these intriguing data suggest the CD89 axis could represent a novel immunotherapeutic target in the mucosae or early life.


Asunto(s)
Inmunoglobulina A , Células Asesinas Naturales , Macaca mulatta , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Inmunoglobulina A/metabolismo , Inmunoglobulina A/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Receptores Fc/metabolismo , Receptores Fc/genética , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Regulación hacia Arriba , Inmunidad Mucosa , Citotoxicidad Inmunológica , Células Cultivadas , Antígenos CD
3.
Transplant Direct ; 10(8): e1665, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38988689

RESUMEN

Background: The clinical success of liver transplantation has led to increased demand, requiring further expansion of the donor pool. Therapeutic interventions to optimize organs from donation after circulatory death (DCD) have significant potential to mitigate the organ shortage. Dysfunction in DCD liver grafts is mediated by microvascular thrombosis during the warm ischemic period, and strategies that reduce this thrombotic burden may improve graft function. We hypothesized that the administration of the fibrinolytic enzyme plasmin to the donor organ during the cold storage period would reduce the thrombotic burden and improve DCD liver graft function. Methods: In 2 separate cohorts, 32 syngeneic orthotopic rat liver transplants were performed in Lewis rats. Livers were procured from donors with 45 min of warm ischemic injury. Liver grafts were flushed with histidine-tryptophan-ketoglutarate preservation solution mixed with either plasmin (experimental group) or albumin (control group). All investigators were blinded to treatment group. After preparing the liver for implant using a modified cuff technique, the liver was stored for 1 h by static cold storage at 4 °C. Immediately before implantation, the liver graft was flushed, and this effluent was analyzed for fibrin degradation products to determine graft clot burden. Twenty-four hours following transplantation, animals were euthanized, and samples were collected. Results: Recipient survival was significantly higher for DCD liver grafts treated with plasmin compared with control. Moreover, histology of liver graft tissue immediately before implant reflected significantly reduced congestion in plasmin-treated livers (score, mean ± SD: 0.73 ±â€…0.59 versus 1.12 ±â€…0.48; P = 0.0456). The concentration of fibrin degradation products in the final flush before implantation was significantly reduced in plasmin-treated livers (743 ±â€…136 versus 10 919 ±â€…4642 pg/mL; P = 0.0001), reflecting decreased clot burden in the graft. Conclusions: The present study demonstrates that plasmin improves survival and may reduce thrombotic burden in DCD liver grafts with prolonged warm ischemic injury, meriting further study.

4.
Res Sq ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659814

RESUMEN

Diverse and rapidly mutating viruses pose challenges to immunogen and vaccine design. In this study, we evaluated the ability of memory B-cells obtained from two independent NHP trials to cross-react with individual HIV-1 vaccine components of two different multivalent immunization strategies. We demonstrated that while an HIV-1 Env multiclade, multivalent immunization regimen resulted in a dominant memory B-cell response that converged toward shared epitopes, in a sequential immunization with clonally-related non-stabilized gp140 HIV-1 Envs followed by SOSIP-stabilized gp140 trimers, the change in immunogen format resulted in repriming of the B-cell response.

5.
Front Immunol ; 14: 1306292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264644

RESUMEN

Fcγ receptors (FcγRs) are membrane-bound glycoproteins that bind to the fragment crystallizable (Fc) constant regions of IgG antibodies. Interactions between IgG immune complexes and FcγRs can initiate signal transduction that mediates important components of the immune response including activation of immune cells for clearance of opsonized pathogens or infected host cells. In humans, many studies have identified associations between FcγR gene polymorphisms and risk of infection, or progression of disease, suggesting a gene-level impact on FcγR-dependent immune responses. Rhesus macaques are an important translational model for most human health interventions, yet little is known about the breadth of rhesus macaque FcγR genetic diversity. This lack of knowledge prevents evaluation of the impact of FcγR polymorphisms on outcomes of preclinical studies performed in rhesus macaques. In this study we used long-read RNA sequencing to define the genetic diversity of FcγRs in 206 Indian-origin Rhesus macaques, Macaca mulatta. We describe the frequency of single nucleotide polymorphisms, insertions, deletions, frame-shift mutations, and isoforms. We also index the identified diversity using predicted and known rhesus macaque FcγR and Fc-FcγR structures. Future studies that define the functional significance of this genetic diversity will facilitate a better understanding of the correlation between human and macaque FcγR biology that is needed for effective translation of studies with antibody-mediated outcomes performed in rhesus macaques.


Asunto(s)
Complejo Antígeno-Anticuerpo , Receptores de IgG , Humanos , Animales , Macaca mulatta , Análisis de Secuencia de ARN , Mutación del Sistema de Lectura , Inmunoglobulina G , Glicoproteínas de Membrana
6.
Front Immunol ; 14: 1260377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124734

RESUMEN

Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.


Asunto(s)
Anticuerpos Monoclonales , Receptores Fc , Animales , Humanos , Receptores Fc/metabolismo , Macaca mulatta , Células Asesinas Naturales , Análisis Multivariante , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA