Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Malar J ; 18(1): 334, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31570113

RESUMEN

BACKGROUND: Mosquito saliva elicits immune responses in humans following mosquito blood feeding. Detection of human antibodies recognizing the Anopheles gambiae salivary gland protein 6 (gSG6) or the gSG6-P1 peptide in residents of Africa, South America and Southeast Asia suggested the potential for these antibodies to serve as a universal marker to estimate human biting rates. Validating the utility of this approach requires concurrent comparisons of anopheline biting rates with antibodies to the gSG6 protein to determine the sensitivity and specificity of the assay for monitoring changes in vector populations. This study investigated whether seroprevalence of anti-gSG6 antibodies in humans reflected the relative exposure to Anopheles farauti bites in the Solomon Islands as estimated from sympatric human landing catches. METHODS: Human biting rates by An. farauti were estimated by landing catches at 10 sampling sites in each of 4 villages during the wet and dry seasons. Human serum samples from these same villages were also collected during the wet and dry seasons and analysed for antibody recognition of the gSG6 antigen by the Luminex xMAP© platform. Antibody titres and prevalence were compared to HLCs at the sampling sites nearest to participants' residences for utility of anti-gSG6 antibodies to estimate human exposure to anopheline bites. RESULTS: In this study in the Solomon Islands only 11% of people had very high anti-gSG6 antibody titres, while other individuals did not recognize gSG6 despite nightly exposures of up to 190 bites by An. farauti. Despite clear spatial differences in the human biting rates within and among villages, associations between anti-gSG6 antibody titres and biting rates were not found. CONCLUSIONS: Few studies to date have concurrently measured anopheline biting rates and the prevalence of human antibodies to gSG6. The lack of association between anti-gSG6 antibody titres and concurrently measured human biting rates suggests that the assay for human anti-gSG6 antibodies lacks sufficient sensitivity to be a biomarker of An. farauti exposure at an epidemiologically relevant scale. These findings imply that an improvement in the sensitivity of serology to monitor changes in anopheline biting exposure may require the use of saliva antigens from local anophelines, and this may be especially true for species more distantly related to the African malaria vector An. gambiae.


Asunto(s)
Anopheles , Inmunoglobulina G/sangre , Mordeduras y Picaduras de Insectos/inmunología , Proteínas de Insectos/inmunología , Saliva/inmunología , Proteínas y Péptidos Salivales/inmunología , Animales , Biomarcadores/sangre , Femenino , Humanos , Melanesia , Mosquitos Vectores , Estaciones del Año , Estudios Seroepidemiológicos
2.
Sci Rep ; 10(1): 7018, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341476

RESUMEN

Malaria transmission after universal access and use of malaria preventive services is known as residual malaria transmission. The concurrent spatial-temporal distributions of people and biting mosquitoes in malaria endemic villages determines where and when residual malaria transmission occurs. Understanding human and vector population behaviors and movements is a critical first step to prevent mosquito bites to eliminate residual malaria transmission. This study identified where people in the Solomon Islands are over 24-hour periods. Participants (59%) were predominantly around the house but not in their house when most biting by Anopheles farauti, the dominant malaria vector, occurs. While 84% of people slept under a long-lasting insecticide-treated bed net (LLIN), on average only 7% were under an LLIN during the 18:00 to 21:00 h peak mosquito biting period. On average, 34% of participants spend at least one night away from their homes each fortnight. Despite high LLIN use while sleeping, most human biting by An. farauti occurs early in the evening before people go to sleep when people are in peri-domestic areas (predominantly on verandas or in kitchen areas). Novel vector control tools that protect individuals from mosquito bites between sundown and when people sleep are needed for peri-domestic areas.


Asunto(s)
Malaria/transmisión , Mosquitos Vectores , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Mordeduras y Picaduras de Insectos , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Masculino , Melanesia , Adulto Joven
3.
Parasit Vectors ; 12(1): 31, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642379

RESUMEN

BACKGROUND: Traditional methods for collecting outdoor resting mosquitoes are generally inefficient with relatively low numbers caught per unit effort. The barrier screen, designed to intercept mosquitoes as they fly between areas where blood meals are obtained and oviposition sites where eggs are laid, was developed in 2013 as a novel method of sampling outdoor mosquito populations. Barrier screens do not use an odorant lure and are thus a non-mechanical, simple, low maintenance and passive sampling method for use, even in isolated locations. METHODS: To maximise mosquito collections from barrier screens, multiple Latin square 3 × 3 experiments were conducted in Smithfield, Queensland, Australia. Parameters of barrier screens were varied including the effects of construction materials (net weight and colour), screen design and frequency of inspections. RESULTS: Significantly more mosquitoes were collected on simple dark coloured screens of 50% or 70% shading weight with collections every 30 min. Sixty percent of mosquitoes were found on barrier screens within 60 cm of the ground. CONCLUSIONS: The barrier screen is a relatively new adaptable tool that can answer a number of behavioural, ecological and epidemiological questions relevant for the surveillance and basic understanding of the movement and resting habits of mosquitoes by sex or physiological status. This method has demonstrated robustness in collecting a wide range of mosquito species as well as flexibility in where barrier screens can be deployed to explore mosquito movements within rural and peri-domestic environments.


Asunto(s)
Materiales de Construcción , Culicidae/fisiología , Control de Mosquitos , Animales , Conducta Alimentaria , Femenino , Vuelo Animal , Masculino , Queensland
4.
Parasit Vectors ; 12(1): 558, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31771626

RESUMEN

BACKGROUND: The ecology of many mosquitoes, including Anopheles farauti, the dominant malaria vector in the southwest Pacific including the Solomon Islands, remains inadequately understood. Studies to map fine scale vector distributions are biased when trapping techniques use lures that will influence the natural movements of mosquitoes by attracting them to traps. However, passive collection methods allow the detailed natural distributions of vector populations by sex and physiological states to be revealed. METHODS: The barrier screen, a passive mosquito collection method along with human landing catches were used to record An. farauti distributions over time and space in two Solomon Island villages from May 2016 to July 2017. RESULTS: Temporal and spatial distributions of over 15,000 mosquitoes, including males as well as unfed, host seeking, blood-fed, non-blood fed and gravid females were mapped. These spatial and temporal patterns varied by species, sex and physiological state. Sugar-fed An. farauti were mostly collected between 10-20 m away from houses with peak activity from 18:00 to 19:00 h. Male An. farauti were mostly collected greater than 20 m from houses with peak activity from 19:00 to 20:00 h. CONCLUSIONS: Anopheles farauti subpopulations, as defined by physiological state and sex, are heterogeneously distributed in Solomon Island villages. Understanding the basis for these observed heterogeneities will lead to more accurate surveillance of mosquitoes and will enable spatial targeting of interventions for greater efficiency and effectiveness of vector control.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Mosquitos Vectores/fisiología , Animales , Conducta Alimentaria , Femenino , Vivienda , Masculino , Melanesia , Factores Sexuales , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA