Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cancer Res ; 83(17): 2824-2838, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327406

RESUMEN

Identifying mechanisms underlying relapse is a major clinical issue for effective cancer treatment. The emerging understanding of the importance of metastasis in hematologic malignancies suggests that it could also play a role in drug resistance and relapse in acute myeloid leukemia (AML). In a cohort of 1,273 AML patients, we uncovered that the multifunctional scavenger receptor CD36 was positively associated with extramedullary dissemination of leukemic blasts, increased risk of relapse after intensive chemotherapy, and reduced event-free and overall survival. CD36 was dispensable for lipid uptake but fostered blast migration through its binding with thrombospondin-1. CD36-expressing blasts, which were largely enriched after chemotherapy, exhibited a senescent-like phenotype while maintaining their migratory ability. In xenograft mouse models, CD36 inhibition reduced metastasis of blasts and prolonged survival of chemotherapy-treated mice. These results pave the way for the development of CD36 as an independent marker of poor prognosis in AML patients and a promising actionable target to improve the outcome of patients. SIGNIFICANCE: CD36 promotes blast migration and extramedullary disease in acute myeloid leukemia and represents a critical target that can be exploited for clinical prognosis and patient treatment.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Leucemia Mieloide Aguda/patología , Resultado del Tratamiento , Pronóstico , Recurrencia , Crisis Blástica/patología , Enfermedad Crónica
2.
Cancers (Basel) ; 13(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34680392

RESUMEN

Relapses and resistance to therapeutic agents are major barriers in the treatment of acute myeloid leukemia (AML) patients. These unfavorable outcomes emphasize the need for new strategies targeting drug-resistant cells. As IDH mutations are present in the preleukemic stem cells and systematically conserved at relapse, targeting IDH mutant cells could be essential to achieve a long-term remission in the IDH mutant AML subgroup. Here, using a panel of human AML cell lines and primary AML patient specimens harboring IDH mutations, we showed that the production of an oncometabolite (R)-2-HG by IDH mutant enzymes induces vitamin D receptor-related transcriptional changes, priming these AML cells to differentiate with pharmacological doses of ATRA and/or VD. This activation occurs in a CEBPα-dependent manner. Accordingly, our findings illuminate potent and cooperative effects of IDH mutations and the vitamin D receptor pathway on differentiation in AML, revealing a novel therapeutic approach easily transferable/immediately applicable to this subgroup of AML patients.

3.
Nat Cancer ; 2(11): 1204-1223, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-35122057

RESUMEN

Therapy resistance represents a major clinical challenge in acute myeloid leukemia (AML). Here we define a 'MitoScore' signature, which identifies high mitochondrial oxidative phosphorylation in vivo and in patients with AML. Primary AML cells with cytarabine (AraC) resistance and a high MitoScore relied on mitochondrial Bcl2 and were highly sensitive to venetoclax (VEN) + AraC (but not to VEN + azacytidine). Single-cell transcriptomics of VEN + AraC-residual cell populations revealed adaptive resistance associated with changes in oxidative phosphorylation, electron transport chain complex and the TP53 pathway. Accordingly, treatment of VEN + AraC-resistant AML cells with electron transport chain complex inhibitors, pyruvate dehydrogenase inhibitors or mitochondrial ClpP protease agonists substantially delayed relapse following VEN + AraC. These findings highlight the central role of mitochondrial adaptation during AML therapy and provide a scientific rationale for alternating VEN + azacytidine with VEN + AraC in patients with a high MitoScore and to target mitochondrial metabolism to enhance the sensitivity of AML cells to currently approved therapies.


Asunto(s)
Citarabina , Leucemia Mieloide Aguda , Azacitidina/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Citarabina/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Sulfonamidas
4.
Genome Announc ; 6(6)2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29439036

RESUMEN

Here, we present the draft genome sequence of Cupriavidus pauculus UM1, a metal-resistant heterotrophic nitrifier-denitrifier capable of synthesizing nitrite from pyruvic oxime. The size of the genome is 7,402,815 bp with a GC content of 64.8%. This draft assembly consists of 38 scaffolds.

5.
Genome Announc ; 6(6)2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29439037

RESUMEN

Here, we present the draft genome of Mesorhizobium loti strain LU, a soil bacterium capable of degrading the trihydroxamate siderophore deferrioxamine B to its constituent monohydroxamic acids. Genome size was 6,399,828 bp, with a GC content of 61.5%. This draft genome consists of 35 scaffolds, with an N50 of 389,921 bp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA