Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38854026

RESUMEN

A major mechanism of insecticide resistance in insect pests is knock-down resistance (kdr) caused by mutations in the voltage-gated sodium channel (Vgsc) gene. Despite being common in most malaria Anopheles vector species, kdr mutations have never been observed in Anopheles funestus, the principal malaria vector in Eastern and Southern Africa. While monitoring 10 populations of An. funestus in Tanzania, we unexpectedly found resistance to DDT, a banned insecticide, in one location. Through whole-genome sequencing of 333 An. funestus samples from these populations, we found 8 novel amino acid substitutions in the Vgsc gene, including the kdr variant, L976F (L1014F in An. gambiae), in tight linkage disequilibrium with another (P1842S). The mutants were found only at high frequency in one region, with a significant decline between 2017 and 2023. Notably, kdr L976F was strongly associated with survivorship to the exposure to DDT insecticide, while no clear association was noted with a pyrethroid insecticide (deltamethrin). Further study is necessary to identify the origin and spread of kdr in An. funestus, and the potential threat to current insecticide-based vector control in Africa.

2.
PLoS One ; 18(6): e0286679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37279239

RESUMEN

Attractive Targeted Sugar Baits (ATSB) have been demonstrated to result in significant reductions in malaria vector numbers in areas of scarce vegetation cover such as in Mali and Israel, but it is not clear whether such an effect can be replicated in environments where mosquitoes have a wide range of options for sugar resources. The current study evaluated the attractiveness of the predominant flowering plants of Asembo Siaya County, western Kenya in comparison to an ATSB developed by Westham Co. Sixteen of the most common flowering plants in the study area were selected and evaluated for relative attractiveness to malaria vectors in semi-field structures. Six of the most attractive flowers were compared to determine the most attractive to local Anopheles mosquitoes. The most attractive plant was then compared to different versions of ATSB. In total, 56,600 Anopheles mosquitoes were released in the semi-field structures. From these, 5150 mosquitoes (2621 males and 2529 females) of An. arabiensis, An. funestus and An. gambiae were recaptured on the attractancy traps. Mangifera indica was the most attractive sugar source for all three species while Hyptis suaveolens and Tephrosia vogelii were the least attractive plants to the mosquitoes. Overall, ATSB version 1.2 was significantly more attractive compared to both ATSB version 1.1 and Mangifera indica. Mosquitoes were differentially attracted to various natural plants in western Kenya and ATSB. The observation that ATSB v1.2 was more attractive to local Anopheles mosquitoes than the most attractive natural sugar source indicates that this product may be able to compete with natural sugar sources in western Kenya and suggests this product may have the potential to impact mosquito populations in the field.


Asunto(s)
Anopheles , Insecticidas , Magnoliopsida , Malaria , Masculino , Animales , Femenino , Azúcares , Kenia , Control de Mosquitos , Mosquitos Vectores , Carbohidratos , Flores
3.
Sci Rep ; 12(1): 20596, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446923

RESUMEN

Attractive targeted sugar baits (ATSBs) are a potential vector control tool that exploits the sugar-feeding behaviour of mosquitoes. We evaluated the sugar-feeding behaviour of Anopheles mosquitoes as part of baseline studies for cluster randomised controlled trials of ATSBs. Mosquitoes were collected indoors and outdoors from two villages in western Kenya using prokopack aspirations, malaise tent traps and ultraviolet (UV) light traps. Individual mosquitoes were subjected to the cold anthrone test to assess the presence of sugar. Overall, 15.7% of collected mosquitoes had fed on natural sugar sources. By species and sex, the proportion sugar-fed was 41.3% and 27.7% in male and female Anopheles funestus, 27.2% and 12.8% in male and female An. arabiensis, and 9.7% and 8.3% in male and female An. coustani, respectively. Sugar-feeding was higher in unfed than blood-fed mosquitoes and higher in male than gravid mosquitoes. Anopheles mosquitoes obtained sugar meals from natural sources during all physiological stages, whether they rest indoors or outdoors. These findings offer a potential avenue to exploit for the control of mosquitoes, particularly with the advent of ATSBs, which have been shown to reduce mosquito densities in other regions.


Asunto(s)
Anopheles , Animales , Femenino , Masculino , Conducta Alimentaria , Kenia , Mosquitos Vectores , Azúcares , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA