Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
JACC Adv ; 2(6): 100452, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939447

RESUMEN

Background: Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate. Objectives: The authors applied artificial intelligence (AI) to analyze a single apical 4-chamber transthoracic echocardiogram video clip to detect HFpEF. Methods: A 3-dimensional convolutional neural network was developed and trained on apical 4-chamber video clips to classify patients with HFpEF (diagnosis of heart failure, ejection fraction ≥50%, and echocardiographic evidence of increased filling pressure; cases) vs without HFpEF (ejection fraction ≥50%, no diagnosis of heart failure, normal filling pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or nondiagnostic (high uncertainty). Performance was assessed in an independent multisite data set and compared to previously validated clinical scores. Results: Training and validation included 2,971 cases and 3,785 controls (validation holdout, 16.8% patients), and demonstrated excellent discrimination (area under receiver-operating characteristic curve: 0.97 [95% CI: 0.96-0.97] and 0.95 [95% CI: 0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94 (7.3%) were nondiagnostic; sensitivity (87.8%; 95% CI: 84.5%-90.9%) and specificity (81.9%; 95% CI: 78.2%-85.6%) were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeterminate outputs from the Heart Failure Association-Pretest Assessment, Echocardiographic and Natriuretic Peptide Score, Functional Testing (HFA-PEFF), and Final Etiology and Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension, Elder, and Filling Pressure (H2FPEF) scores, the AI HFpEF model correctly reclassified 73.5% and 73.6%, respectively. During follow-up (median: 2.3 [IQR: 0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients classified as HFpEF by AI (HR: 1.9 [95% CI: 1.5-2.4]). Conclusions: An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated excellent discrimination of patients with vs without HFpEF, more often than clinical scores, and identified patients with higher mortality.

2.
JACC Cardiovasc Imaging ; 15(5): 715-727, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34922865

RESUMEN

OBJECTIVES: The purpose of this study was to establish whether an artificially intelligent (AI) system can be developed to automate stress echocardiography analysis and support clinician interpretation. BACKGROUND: Coronary artery disease is the leading global cause of mortality and morbidity and stress echocardiography remains one of the most commonly used diagnostic imaging tests. METHODS: An automated image processing pipeline was developed to extract novel geometric and kinematic features from stress echocardiograms collected as part of a large, United Kingdom-based prospective, multicenter, multivendor study. An ensemble machine learning classifier was trained, using the extracted features, to identify patients with severe coronary artery disease on invasive coronary angiography. The model was tested in an independent U.S. STUDY: How availability of an AI classification might impact clinical interpretation of stress echocardiograms was evaluated in a randomized crossover reader study. RESULTS: Acceptable classification accuracy for identification of patients with severe coronary artery disease in the training data set was achieved on cross-fold validation based on 31 unique geometric and kinematic features, with a specificity of 92.7% and a sensitivity of 84.4%. This accuracy was maintained in the independent validation data set. The use of the AI classification tool by clinicians increased inter-reader agreement and confidence as well as sensitivity for detection of disease by 10% to achieve an area under the receiver-operating characteristic curve of 0.93. CONCLUSIONS: Automated analysis of stress echocardiograms is possible using AI and provision of automated classifications to clinicians when reading stress echocardiograms could improve accuracy, inter-reader agreement, and reader confidence.


Asunto(s)
Enfermedad de la Arteria Coronaria , Inteligencia Artificial , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Ecocardiografía/métodos , Humanos , Valor Predictivo de las Pruebas , Estudios Prospectivos
3.
Sci Rep ; 10(1): 170, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932608

RESUMEN

Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal.


Asunto(s)
Inteligencia Artificial , Automonitorización de la Glucosa Sanguínea/métodos , Aprendizaje Profundo , Electrocardiografía/métodos , Hipoglucemia/diagnóstico , Monitoreo Fisiológico , Medicina de Precisión , Estudios de Cohortes , Corazón/fisiopatología , Humanos , Redes Neurales de la Computación , Proyectos Piloto , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA