Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 625(7995): 483-488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233620

RESUMEN

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

2.
Nat Mater ; 20(8): 1136-1141, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33795846

RESUMEN

Pseudocapacitors harness unique charge-storage mechanisms to enable high-capacity, rapidly cycling devices. Here we describe an organic system composed of perylene diimide and hexaazatrinaphthylene exhibiting a specific capacitance of 689 F g-1 at a rate of 0.5 A g-1, stability over 50,000 cycles, and unprecedented performance at rates as high as 75 A g-1. We incorporate the material into two-electrode devices for a practical demonstration of its potential in next-generation energy-storage systems. We identify the source of this exceptionally high rate charge storage as surface-mediated pseudocapacitance, through a combination of spectroscopic, computational and electrochemical measurements. By underscoring the importance of molecular contortion and complementary electronic attributes in the selection of molecular components, these results provide a general strategy for the creation of organic high-performance energy-storage materials.

3.
Phys Chem Chem Phys ; 20(31): 20513-20524, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30046782

RESUMEN

Self-assembly of sensitizer and acceptor molecules has recently emerged as a promising strategy to facilitate and harness photon upconversion via triplet-triplet annihilation (TTA-UC). In addition to the energetic requirements, the structure and relative orientation of these molecules can have a strong influence on TTA-UC rates and efficiency. Here we report the synthesis of five different acceptor molecules composed of an anthracene core functionalized with 9,10- or 2,6-phenyl, methyl, or directly bound phosphonic acid groups and their incorporation into self-assembled bilayers on a ZrO2 surface. All five films facilitate green-to-blue photon upconversion with Φuc as high as 0.0023. The efficiency of TTA, and not triplet energy transfer, fluorescence, or losses via FRET, was primarily responsible for dictating the Φuc emission. Even for molecules having similar photophysical properties, variation in the position of the phosphonic acid resulted in dramatically different ΦTTA, Ith values, γTTA, and D. Interestingly, we observed a strong linear correlation between ΦTTA and the Ith value but the cause of this relationship, if any, is unclear.

4.
Chem Commun (Camb) ; 55(9): 1263-1266, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30632552

RESUMEN

Here we report a method for enantioenriching BINOL using a chiral auxiliary and an excited state proton transfer (ESPT) event. Regardless of the starting enantiomeric excess (ee), after irradiation the solution reaches a photostationary state whose ee is dependent solely on the identity of the chiral auxiliary group. The enantioenriched BINOL is easily recovered by cleaving the auxiliary group in mild conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA