Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216150

RESUMEN

The availability, biocompatibility, non-toxicity, and ease of chemical modification make cellulose a promising natural polymer for the production of biomedical materials. Cryogelation is a relatively new and straightforward technique for producing porous light and super-macroporous cellulose materials. The production stages include dissolution of cellulose in an appropriate solvent, regeneration (coagulation) from the solution, removal of the excessive solvent, and then freezing. Subsequent freeze-drying preserves the micro- and nanostructures of the material formed during the regeneration and freezing steps. Various factors can affect the structure and properties of cellulose cryogels, including the cellulose origin, the dissolution parameters, the solvent type, and the temperature and rate of freezing, as well as the inclusion of different fillers. Adjustment of these parameters can change the morphology and properties of cellulose cryogels to impart the desired characteristics. This review discusses the structure of cellulose and its properties as a biomaterial, the strategies for cellulose dissolution, and the factors affecting the structure and properties of the formed cryogels. We focus on the advantages of the freeze-drying process, highlighting recent studies on the production and application of cellulose cryogels in biomedicine and the main cryogel quality characteristics. Finally, conclusions and prospects are presented regarding the application of cellulose cryogels in wound healing, in the regeneration of various tissues (e.g., damaged cartilage, bone tissue, and nerves), and in controlled-release drug delivery.


Asunto(s)
Celulosa/análogos & derivados , Criogeles/química , Nanomedicina/métodos , Ingeniería de Tejidos/métodos , Animales , Liofilización/métodos , Humanos
2.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445088

RESUMEN

Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210-250 nm and a negative surface charge (ζ-potential = -19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30-40% and 85-90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 µg/mL.


Asunto(s)
Antibacterianos/administración & dosificación , Quitosano/química , Colistina/administración & dosificación , Portadores de Fármacos/química , Ácido Hialurónico/química , Polielectrolitos/química , Antibacterianos/farmacología , Colistina/farmacología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos
3.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808742

RESUMEN

Polysaccharide-based cryogels are promising materials for producing scaffolds in tissue engineering. In this work, we obtained ultralight (0.046-0.162 g/cm3) and highly porous (88.2-96.7%) cryogels with a complex hierarchical morphology by dissolving cellulose in phosphoric acid, with subsequent regeneration and freeze-drying. The effect of the cellulose dissolution temperature on phosphoric acid and the effect of the freezing time of cellulose hydrogels on the structure and properties of the obtained cryogels were studied. It has been shown that prolonged freezing leads to the formation of denser and stronger cryogels with a network structure. The incorporation of chitin nanowhiskers led to a threefold increase in the strength of the cellulose cryogels. The X-ray diffraction method showed that the regenerated cellulose was mostly amorphous, with a crystallinity of 26.8-28.4% in the structure of cellulose II. Cellulose cryogels with chitin nanowhiskers demonstrated better biocompatibility with mesenchymal stem cells compared to the normal cellulose cryogels.

4.
Materials (Basel) ; 14(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576412

RESUMEN

Cryogelation is a developing technique for the production of polysaccharide materials for biomedical applications. The formation of a macroporous structure during the freeze-drying of polysaccharide solutions creates biomaterials suitable for tissue engineering. Due to its availability, biocompatibility, biodegradability, and non-toxicity, chitin is a promising natural polysaccharide for the production of porous materials for tissue engineering; however, its use is limited due to the difficulty of dissolving it. This work describes the preparation of cryogels using phosphoric acid as the solvent. Compared to typical chitin solvents phosphoric acid can be easily removed from the product and recovered. The effects of chitin dissolution conditions on the structure and properties of cryogels were studied. Lightweight (ρ 0.025-0.059 g/cm3), highly porous (96-98%) chitin cryogels with various heterogeneous morphology were produced at a dissolution temperature of 20 ± 3 °C, a chitin concentration of 3-15%, and a dissolution time of 6-25 h. The crystallinity of the chitin and chitin cryogels was evaluated by 13C CP-MAS NMR spectroscopy and X-ray diffractometry. Using FTIR spectroscopy, no phosphoric acid esters were found in the chitin cryogels. The cryogels had compressive modulus E values from 118-345 kPa and specific surface areas of 0.3-0.7 m2/g. The results indicate that chitin cryogels can be promising biomaterials for tissue engineering.

5.
Int J Biol Macromol ; 187: 157-165, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34298050

RESUMEN

Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 µg/mL (against Pseudomonas aeruginosa).


Asunto(s)
Antiinfecciosos , Colistina , Ácido Hialurónico , Polielectrolitos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Colistina/química , Colistina/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Polielectrolitos/química , Polielectrolitos/farmacología
6.
Materials (Basel) ; 14(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068680

RESUMEN

Polyplex-based gene delivery systems are promising substitutes for viral vectors because of their high versatility and lack of disadvantages commonly encountered with viruses. In this work, we studied the DNA polyplexes with N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride (TMAB-CS) of various compositions in different cell types. Investigations of the interaction of TMAB-CS with DNA by different physical methods revealed that the molecular weight and the degree of substitution do not dramatically influence the hydrodynamic properties of polyplexes. Highly substituted TMAB-CS samples had a high affinity for DNA. The transfection protocol was optimized in HEK293T cells and achieved the highest efficiency of 30-35%. TMAB-CS was dramatically less effective in nonadherent K562 cells (around 1% transfected cells), but it was more effective and less toxic than polyarginine.

7.
Polymers (Basel) ; 12(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380700

RESUMEN

Recently, much effort has been expended on the development of non-viral gene delivery systems based on polyplexes of nucleic acids with various cationic polymers. Natural polysaccharide derivatives are promising carriers due to their low toxicity. In this work, chitosan was chemically modified by a reaction with 4-formyl-n,n,n-trimethylanilinium iodide and pyridoxal hydrochloride and subsequent reduction of the imine bond with NaBH4. This reaction yielded three novel derivatives, n-[4-(n',n',n'-trimethylammonium)benzyl]chitosan chloride (TMAB-CS), n-[(3-hydroxy-5-(hydroxymethyl)-2-methyl-4-pyridine)methyl]chitosan chloride (Pyr-CS), and n-[4-(n',n',n''-trimethylammonium)benzyl]-n-[(3-hydroxy-5-(hydroxymethyl)-2-methyl-4-pyridine)methyl]chitosan chloride (PyrTMAB-CS). Their structures and degrees of substitution were established by 1H NMR spectroscopy as DS1 = 0.22 for TMAB-CS, DS2 = 0.28 for Pyr-CS, and DS1 = 0.21, DS2 = 0.22 for PyrTMAB-CS. Dynamic light scattering measurements revealed that the new polymers formed stable polyplexes with plasmid DNA encoding the green fluorescent protein (pEGFP-N3) and that the particles had the smallest size (110-165 nm) when the polymer:DNA mass ratio was higher than 5:1. Transfection experiments carried out in the HEK293 cell line using the polymer:DNA polyplexes demonstrated that Pyr-CS was a rather poor transfection agent at polymer:DNA mass ratios less than 10:1, but it was still more effective than the TMAB-CS and PyrTMAB-CS derivatives that contained a quaternary ammonium group. By contrast, TMAB-CS and PyrTMAB-CS were substantially more effective than Pyr-CS at higher polymer:DNA mass ratios and showed a maximum efficiency at 200:1 (50%-70% transfected cells). Overall, the results show the possibility of combining substituent effects in a single carrier, thereby increasing its efficacy.

8.
Biomedicines ; 8(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847141

RESUMEN

In this work, a bilayer chitosan/sodium alginate scaffold was prepared via a needleless electrospinning technique. The layer of sodium alginate was electrospun over the layer of chitosan. The introduction of partially deacetylated chitin nanowhiskers (CNW) stabilized the electrospinning and increased the spinnability of the sodium alginate solution. A CNW concentration of 7.5% provided optimal solution viscosity and structurization due to electrostatic interactions and the formation of a polyelectrolyte complex. This allowed electrospinning of defectless alginate nanofibers with an average diameter of 200-300 nm. The overall porosity of the bilayer scaffold was slightly lower than that of a chitosan monolayer, while the average pore size of up to 2 µm was larger for the bilayer scaffold. This high porosity promoted mesenchymal stem cell proliferation. The cells formed spherical colonies on the chitosan nanofibers, but formed flatter colonies and monolayers on alginate nanofibers. The fabricated chitosan/sodium alginate bilayer material was deemed promising for tissue engineering applications.

9.
Carbohydr Res ; 498: 108191, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33157460

RESUMEN

Chitin and chitosan can undergo nonspecific enzymatic hydrolysis by several different hydrolases. This susceptibility to nonspecific enzymes opens up many opportunities for producing chitooligosaccharides and low molecular weight chitopolysaccharides, since specific chitinases and chitosanases are rare and not commercially available. In this study, chitosan and chitin were hydrolyzed using several commercially available hydrolases. Among them, cellulases with the highest specific activity demonstrated the best activity, as indicated by the rapid decrease in viscosity of a chitosan solution. The hydrolysis of chitosan by nonspecific enzymes generated a sugar release that corresponded to the decrease in the degree of polymerization. This decrease reached a maximum of 3.3-fold upon hydrolysis of 10% of the sample. Cellulases were better than lysozyme or amylases at hydrolyzing chitosan and chitin. Analysis of 13C CP-MAS NMR and FTIR spectra of chitin after cellulase treatment revealed changes in the chitin crystal structure related to rearrangement of inter- and intramolecular H-bonds. The structural changes and decreases in crystallinity allowed dissolution of chitin molecules of high molecular weight and enhanced the solubility of chitin in alkali by 10-12% compared to untreated chitin.


Asunto(s)
Quitina/química , Quitosano/química , Enlace de Hidrógeno , Hidrolasas/metabolismo , Hidrólisis , Viscosidad
10.
Int J Biol Macromol ; 158: 811-818, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32371131

RESUMEN

The topical application of ophthalmic drugs is a convenient and safe mode of drug administration. However, the bioavailability of topical drugs in the eye is low due to eye barriers and the rapid removal of the drug from the conjunctival surface by the tear fluid. The aim of this study was to obtain dexamethasone-loaded mucoadhesive self-assembled particles based on a conjugate of succinyl cholesterol with chitosan (SC-CS) for potential use as a topical ocular formulation. SC-CS was obtained via a carbodiimide-mediated coupling reaction (degree of substitution DS 1.2-5.8%). SC-CS in the DS range of 1.2-3.0% can self-organize in solution to form positively charged particles (ζ-potential 20-37 mV) of submicron size (hydrodynamic diameter 700-900 nm). The SC-CS particles show good mucoadhesiveness, which decreases with increasing DS. The obtained particles can encapsulate 159-170 µg/mg dexamethasone; they release about 50% of drug in 2 h, and the cumulative drug release reached 95% in 24 h. A cell model confirmed that dexamethasone-loaded SC-CS particles are non-cytotoxic and exhibit a comparable anti-inflammatory activity to that of pure dexamethasone. Testing the osmotic resistance of erythrocytes showed that both dexamethasone-loaded and non-loaded SC-CS particles have greater membrane-stabilizing ability than that of dexamethasone.

11.
Biomolecules ; 9(7)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331095

RESUMEN

Hydrogels are promising materials for various applications, including drug delivery, tissue engineering, and wastewater treatment. In this work, we designed an alginate (ALG) hydrogel containing partially deacetylated chitin nanowhiskers (CNW) as a filler. Gelation in the system occurred by both the protonation of alginic acid and the formation of a polyelectrolyte complex with deacetylated CNW surface chains. Morphological changes in the gel manifested as a honeycomb structure in the freeze-dried gel, unlike the layered structure of an ALG gel. Disturbance of the structural orientation of the gels by the introduction of CNW was also expressed as a decrease in the intensity of X-ray diffraction reflexes. All studied systems were non-Newtonian liquids that violated the Cox-Merz rule. An increase in the content of CNW in the ALG-CNW hydrogel resulted in increases in the yield stress, maximum Newtonian viscosity, and relaxation time. Inclusion of CNW prolonged the release of tetracycline due to changes in diffusion. The first phases (0-5 h) of the release profiles were well described by the Higuchi model. ALG-CNW hydrogels may be of interest as soft gels for controlled topical or intestinal drug delivery.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Quitina/química , Liberación de Fármacos , Hidrogeles/química , Reología , Tetraciclina/química , Viscosidad
12.
Materials (Basel) ; 12(12)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238491

RESUMEN

A bilayer nonwoven material for tissue regeneration was prepared from chitosan (CS) and hyaluronic acid (HA) by needleless electrospinning wherein 10-15 wt% (with respect to polysaccharide) polyethylene oxide was added as spinning starter. A fiber morphology study confirmed the material's uniform defect-free structure. The roughness of the bilayer material was in the range of 1.5-3 µm, which is favorable for cell growth. Electrospinning resulted in the higher orientation of the polymer structure compared with that of corresponding films, and this finding may be related to the orientation of the polymer chains during the spinning process. These structural changes increased the intermolecular interactions. Thus, despite a high swelling degree of 1.4-2.8 g/g, the bilayer matrix maintained its shape due to the large quantity of polyelectrolyte contacts between the chains of oppositely charged polymers. The porosity of the bilayer CS-HA nonwoven material was twice lower, while the Young's modulus and break stress were twice higher than that of a CS monolayer scaffold. Therefore, during the electrospinning of the second layer, HA may have penetrated into the pores of the CS layer, thereby increasing the polyelectrolyte contacts between the two polymers. The bilayer CS-HA scaffold exhibited good compatibility with mesenchymal stem cells. This characteristic makes the developed material promising for tissue engineering applications.

13.
Int J Biol Macromol ; 120(Pt A): 1023-1029, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30172812

RESUMEN

Succinyl-chitin (SCH) nanoparticles were obtained by acylation of partially deacetylated chitin (DCH) nanofibers. Introduction of the succinyl moiety induced a partial amorphization of DCH, as viewed by X-ray diffraction, and increased the fractal dimension of the colloids from df = 1.2 (DCH) to 1.5-1.7 (SCH), as revealed by light scattering. The spherically symmetric form of the colloids remained almost unchanged, as indicated by the range of structure-sensitive ratios 1.0 < Rg/Rh < 1.2; the hydrodynamic diameter ranged from 200 to 300 nm. The cytoprotective activity of the SCH nanoparticles was evaluated in vivo in an acute hearing pathology model (220-250 g male Wistar rats, n = 90) following prophylactic and therapeutic administrations. Ototropic action was estimated using the amplitude of otoacoustic emissions at the frequency of the distortion product otoacoustic emissions in the range of 4-6.4 kHz before acoustic stimulation, as well as at 1 h, 24 h, and 7 days after acoustic stimulation. A dispersion of 0.3% SCH nanoparticles demonstrated prolonged ototropic action and earlier regeneration of hearing functions when compared to a meglumine sodium succinate solution. Thus, intravenous administration of the SCH nanoparticles increases the cycling time of exogenous succinate and improves biodistribution in tissues possessing a hemato-labyrinth barrier.


Asunto(s)
Quitina/química , Pérdida Auditiva/tratamiento farmacológico , Nanofibras/administración & dosificación , Nanopartículas/química , Acilación , Animales , Quitina/administración & dosificación , Coloides/administración & dosificación , Coloides/química , Pérdida Auditiva/patología , Humanos , Masculino , Nanofibras/química , Nanopartículas/administración & dosificación , Emisiones Otoacústicas Espontáneas/efectos de los fármacos , Ratas , Ratas Wistar , Ácido Succínico/química , Distribución Tisular/efectos de los fármacos
14.
Carbohydr Polym ; 181: 693-700, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29254024

RESUMEN

А novel cationic chitosan derivative, N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride (TMAB-CS), with different degrees of substitution (DS) was synthesized by a chemoselective interaction of 4-formyl-N,N,N-trimethylanilinium iodide with chitosan amino groups using a reductive amination method. Several factors (pH, reactant ratio, reaction time, and chitosan structure) were studied for their effects on the DS of the resulting TMAB-CS. The obtained derivatives were characterized by 1H NMR and FTIR spectroscopy. Turbidimetric titration showed enhanced solubility over a wide pH range even for low-substituted TMAB-CS. TMAB-CS provided strong DS-dependent binding of plasmid DNA. Dynamic light scattering measurements revealed the formation of stable polyplexes with hydrodynamic diameters of 200-300nm and ζ-potential of 20-30mV. TMAB-CS with relatively low DS (25%) demonstrated more pronounced transfection efficiency (up to 2000 cell/cm2) of plasmid DNA into the HEK293 cell line promoted by free TMAB-CS. The positive effects of lower DS can be related to a better polyplex dissociation within the cell. The cytotoxicity of TMAB-CS was comparable to that of the initial chitosan at concentrations up to 300ng/µL, even at high DS.


Asunto(s)
Quitosano/análogos & derivados , Quitosano/química , ADN/química , Compuestos de Amonio Cuaternario/química , Quitosano/síntesis química , Quitosano/toxicidad , ADN/genética , Células HEK293 , Humanos , Plásmidos , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/toxicidad , Solubilidad , Transfección
15.
Carbohydr Polym ; 162: 49-55, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28224894

RESUMEN

Nanoparticles of two chitosan derivatives - N-succinyl-chitosan (SC) and N-glutaryl-chitosan (GC) - were developed as passive transport systems for taxanes (paclitaxel and docetaxel) using an ionic gelation technique with sodium tripolyphosphate. These nanoparticles had an apparent hydrodynamic diameter of 300-350nm, a ζ-potential of 25-31mV, an encapsulation efficiency of 21-26%, and a drug loading efficiency of 6-13%. DLS and SLS analysis shows that the nanoparticles have a unimodal size distribution and spherical form. Drug release kinetics of the taxane-loaded nanoparticles demonstrates that more than 50% of the loaded taxane could be released upon the degradation of the nanoparticles after targeted delivery. The drug-loaded SC and GC nanoparticles exhibit high cytotoxicity towards AGS cancer cell lines and their antitumor activity is consequently enhanced when compared with free taxanes.


Asunto(s)
Quitosano/química , Sistemas de Liberación de Medicamentos , Taxoides/administración & dosificación , Portadores de Fármacos/química , Nanopartículas/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA