Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chemistry ; : e202400858, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887133

RESUMEN

A range of novel BODIPY derivatives with a tripodal aromatic core was synthesized and characterized spectroscopically. These new fluorophores showed promising features as probes for in vitro assays in live cells and offer strategic routes for further functionalization towards hybrid nanomaterials. Incorporation of biotin tags facilitated proof-of-concept access to targeted bioconjugates as molecular probes. Computational explorations using DFT and TD-DFT calculations identified the most stable tripodal linker conformations and predicted their absorption and emission behavior. The uptake and speciation of these molecules in living prostate cancer cells was imaged by single- and two-photon excitation techniques coupled with two-photon fluorescence lifetime imaging (2P FLIM).

2.
Biometals ; 36(2): 321-337, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35366134

RESUMEN

Iron levels in mitochondria are critically important for the normal functioning of the organelle. Abnormal levels of iron and the associated formation of toxic oxygen radicals have been linked to a wide range of diseases and consequently it is important to be able to both monitor and control levels of the mitochondrial labile iron pool. To this end a series of iron chelators which are targeted to mitochondria have been designed. This overview describes the synthesis of some of these molecules and their application in monitoring mitochondrial labile iron pools and in selectively removing excess iron from mitochondria.


Asunto(s)
Quelantes del Hierro , Sobrecarga de Hierro , Humanos , Quelantes del Hierro/farmacología , Quelantes del Hierro/química , Hierro/química , Mitocondrias , Especies Reactivas de Oxígeno/análisis
3.
Molecules ; 28(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764245

RESUMEN

The chemical nature of intracellular labile iron pools (LIPs) is described. By virtue of the kinetic lability of these pools, it is suggested that the isolation of such species by chromatography methods will not be possible, but rather mass spectrometric techniques should be adopted. Iron-sensitive fluorescent probes, which have been developed for the detection and quantification of LIP, are described, including those specifically designed to monitor cytosolic, mitochondrial, and lysosomal LIPs. The potential of near-infrared (NIR) probes for in vivo monitoring of LIP is discussed.


Asunto(s)
Colorantes Fluorescentes , Hierro , Citosol , Cinética , Imagen Óptica
4.
Biochem Soc Trans ; 50(2): 975-985, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35385082

RESUMEN

5-Aminolevulinic acid-based photodynamic therapy (ALA-PDT) was first implemented over three decades ago and has since been mainly part of clinical practice for the management of pre-cancerous and cancerous skin lesions. Photodynamic therapy relies on the combination of a photosensitizer, light and oxygen to cause photo-oxidative damage of cellular components. 5-Aminolevulinic acid (ALA) is a natural precursor of the heme biosynthetic pathway, which when exogenously administered leads to the accumulation of the photoactivatable protoporphyrin IX. Although, effective and providing excellent cosmetic outcomes, its use has been restricted by the burning, stinging, and prickling sensation associated with treatment, as well as cutaneous adverse reactions that may be induced. Despite intense research in the realm of drug delivery, pain moderation, and light delivery, a novel protocol design using sunlight has led to some of the best results in terms of treatment response and patient satisfaction. Daylight PDT is the protocol of choice for the management of treatment of multiple or confluent actinic keratoses (AK) skin lesions. This review aims to revisit the photophysical, physicochemical and biological characteristics of ALA-PDT, and the underlying mechanisms resulting in daylight PDT efficiency and limitations.


Asunto(s)
Queratosis Actínica , Fotoquimioterapia , Ácido Aminolevulínico/uso terapéutico , Humanos , Queratosis Actínica/tratamiento farmacológico , Fotoquimioterapia/métodos , Luz Solar , Resultado del Tratamiento
5.
Biochem J ; 469(3): 357-66, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26008950

RESUMEN

Mitochondrial labile iron (LI) plays a crucial role in oxidative injuries and pathologies. At present, there is no organelle-specific sensitive iron sensor which can reside exclusively in the mitochondria and reliably monitor levels of LI in this organelle. In the present study, we describe the development of novel fluorescent and highly specific mitochondria iron sensors, using the family of mitochondria-homing 'SS-peptides' (short cell-permeant signal peptides mimicking mitochondrial import sequence) as carriers of highly specific iron chelators for sensitive evaluation of the mitochondrial LI. Microscopic analysis of subcellular localization of a small library of fluorescently labelled SS-like peptides identified dansyl (DNS) as the lead fluorophore for the subsequent synthesis of chimaeric iron chelator-peptides of either catechol (compounds 10 and 11) or hydroxypyridinone (compounds 13 and 14) type. The iron-sensing ability of these chimaeric compounds was confirmed by fluorescent quenching and dequenching studies both in solution and in cells, with compound 13 exhibiting the highest sensitivity towards iron modulation. The intramolecular fluorophore-chelator distance and the iron affinity both influence probe sensitivity towards iron. These probes represent the first example of highly sensitive mitochondria-directed fluorescent iron chelators with potential to monitor mitochondrial LI levels.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Quelantes del Hierro/química , Quelantes del Hierro/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Péptidos de Penetración Celular/síntesis química , Fibroblastos/química , Fibroblastos/metabolismo , Colorantes Fluorescentes/química , Humanos , Quelantes del Hierro/síntesis química , Mitocondrias/química , Coloración y Etiquetado
6.
Front Pharmacol ; 15: 1359618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379897

RESUMEN

Friedreich's ataxia (FRDA) is a rare childhood neurologic disorder, affecting 1 in 50,000 Caucasians. The disease is caused by the abnormal expansion of the GAA repeat sequence in intron 1 of the FXN gene, leading to the reduced expression of the mitochondrial protein frataxin. The disease is characterised by progressive neurodegeneration, hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. The reduced expression of frataxin has been suggested to result in the downregulation of endogenous antioxidant defence mechanisms and mitochondrial bioenergetics, and the increase in mitochondrial iron accumulation thereby leading to oxidative stress. The confirmation of oxidative stress as one of the pathological signatures of FRDA led to the search for antioxidants which can be used as therapeutic modality. Based on this observation, antioxidants with different mechanisms of action have been explored for FRDA therapy since the last two decades. In this review, we bring forth all antioxidants which have been investigated for FRDA therapy and have been signed off for clinical trials. We summarise their various target points in FRDA disease pathway, their performances during clinical trials and possible factors which might have accounted for their failure or otherwise during clinical trials. We also discuss the limitation of the studies completed and propose possible strategies for combinatorial therapy of antioxidants to generate synergistic effect in FRDA patients.

7.
RSC Chem Biol ; 4(12): 1082-1095, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033726

RESUMEN

New design and synthetic strategies were developed to generate functional phenyl boronic acid (BA)-based fluorescent probes incorporating the 1,8-naphthalimide (NI) tag. This fluorescent core was anchored onto the BA unit through small organic linkers consisting of nitrogen groups which can arrest, and internally stabilise the phenyl-boronate units. The newly synthesised fluorophores were characterised spectroscopically by NMR spectroscopy and mass spectrometry and evaluated for their ability to bind to a naturally occurring polysaccharide, ß-d-glucan in DMSO and simultaneously as act as in vitro cell imaging reagents. The uptake of these new NI-boronic acid derivatives was studied living cancer cells (HeLa, PC-3) in the presence, and absence, of ß-d-glucan. Time-correlated single-photon counting (TCSPC) of DMSO solutions and two-photon fluorescence-lifetime imaging microscopy (FLIM) techniques allowed an insight into the probes' interaction with their environment. Their cellular uptake and distributions were imaged using laser scanning confocal fluorescence microscopy under single- and two-photon excitation regimes (λmax 910 nm). FLIM facilitated the estimation of the impact of the probe's cellular surroundings using the fluorophore lifetime. The extent to which this was mediated by the ß-d-glucan was visualised by 2-photon FLIM in living cells. The fluorescence lifetime observed under a range of temperatures varied appreciably, indicating that changes in the environment can be sensed by these probes. In all cases, the cellular membrane penetration of these new probes was remarkable even under variable temperature conditions and localisation was widely concentrated in the cellular cytoplasm, without specific organelle trapping: we conclude that these new probes show promise for cellular imaging in living cancer cells.

8.
ACS Omega ; 8(18): 16047-16079, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179648

RESUMEN

The long-standing interest in thiosemicarbazones (TSCs) has been largely driven by their potential toward theranostic applications including cellular imaging assays and multimodality imaging. We focus herein on the results of our new investigations into: (a) the structural chemistry of a family of rigid mono(thiosemicarbazone) ligands characterized by extended and aromatic backbones and (b) the formation of their corresponding thiosemicarbazonato Zn(II) and Cu(II) metal complexes. The synthesis of new ligands and their Zn(II) complexes was performed using a rapid, efficient and straightforward microwave-assisted method which superseded their preparation by conventional heating. We describe hereby new microwave irradiation protocols that are suitable for both imine bond formation reactions in the thiosemicabazone ligand synthesis and for Zn(II) metalation reactions. The new thiosemicarbazone ligands, denoted HL, mono(4-R-3-thiosemicarbazone)quinone, and their corresponding Zn(II) complexes, denoted ZnL2, mono(4-R-3-thiosemicarbazone)quinone, where R = H, Me, Ethyl, Allyl, and Phenyl, quinone = acenapthnenequinone (AN), aceanthrenequinone (AA), phenanthrenequinone (PH), and pyrene-4,5-dione (PY) were isolated and fully characterized spectroscopically and by mass spectrometry. A plethora of single crystal X-ray diffraction structures were obtained and analyzed and the geometries were also validated by DFT calculations. The Zn(II) complexes presented either distorted octahedral geometry or tetrahedral arrangements of the O/N/S donors around the metal center. The modification of the thiosemicarbazide moiety at the exocyclic N atoms with a range of organic linkers was also explored, opening the way to bioconjugation protocols for these compounds. The radiolabeling of these thiosemicarbazones with 64Cu was achieved under mild conditions for the first time: this cyclotron-available radioisotope of copper (t1/2 = 12.7 h; ß+ 17.8%; ß- 38.4%) is well-known for its proficiency in positron emission tomography (PET) imaging and for its theranostic potential, on the basis of the preclinical and clinical cancer research of established bis(thiosemicarbazones), such as the hypoxia tracer 64Cu-labeled copper(diacetyl-bis(N4-methylthiosemicarbazone)], [64Cu]Cu(ATSM). Our labeling reactions proceeded in high radiochemical incorporation (>80% for the most sterically unencumbered ligands) showing promise of these species as building blocks for theranostics and synthetic scaffolds for multimodality imaging probes. The corresponding "cold" Cu(II) metalations were also performed under the mild conditions mimicking the radiolabeling protocols. Interestingly, room temperature or mild heating led to Cu(II) incorporation in the 1:1, as well as 1:2 metal: ligand ratios in the new complexes, as evident from extensive mass spectrometry investigations backed by EPR measurements, and the formation of Cu(L)2-type species prevails, especially for the AN-Ph thiosemicarbazone ligand (L-). The cytotoxicity levels of a selection of ligands and Zn(II) complexes in this class were further tested in commonly used human cancer cell lines (HeLa, human cervical cancer cells, and PC-3, human prostate cancer cells). Tests showed that their IC50 levels are comparable to that of the clinical drug cis-platin, evaluated under similar conditions. The cellular internalizations of the selected ZnL2-type compounds Zn(AN-Allyl)2, Zn(AA-Allyl)2, Zn(PH-Allyl)2, and Zn(PY-Allyl)2 were evaluated in living PC-3 cells using laser confocal fluorescent spectroscopy and these experiments showed exclusively cytoplasmic distributions.

9.
Mol Pharm ; 9(7): 1862-76, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22129427

RESUMEN

It is important to obtain structure-activity relationship (SAR) data across cationic lipids for the self-assembly and nonviral intracellular delivery of siRNA. The aims of this work are to carry out a SAR study on the efficiency of asymmetrical N(4),N(9)-diacyl spermines in siRNA delivery and EGFP reporter gene silencing, with comparisons to selected mixtures composed of symmetrical N(4),N(9)-diacyl spermines. Another important aim of these studies is to quantify the changes in cell viability, assayed with alamarBlue, as a function of lipid structure. Therefore, we have designed, synthesized, purified, and assayed novel cationic lipids that are asymmetrical lipopolyamines based on spermine. Flow cytometry and fluorescence microscopy in an EGFP stably transfected HeLa cell line, measuring both delivery of fluorescently tagged siRNAs and silencing the EGFP signal, allowed quantitation of the differences between asymmetrical cationic lipids, mixtures of their symmetrical counterparts, and comparison with commercial nonviral delivery agents. Intracellular delivery of siRNA and gene silencing by siRNA differ with different hydrophobic domains. In these asymmetrical N(4),N(9)-diacyl spermines, lipids that enhance siRNA uptake do not necessarily enhance siRNA-induced inhibition of gene expression: C18 and longer saturated chains promote uptake, while more unsaturated C18 chains promote gene silencing. These properties are efficiently demonstrated in a new nontoxic cationic lipid siRNA vector, N(4)-linoleoyl-N(9)-oleoyl-1,12-diamino-4,9-diazadodecane (LinOS), which is also shown to be comparable with or superior to TransIT-TKO and Lipofectamine 2000.


Asunto(s)
Silenciador del Gen/efectos de los fármacos , Genes Reporteros/genética , Genes erbB-1/genética , Vectores Genéticos/genética , ARN Interferente Pequeño/genética , Espermina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Técnicas de Transferencia de Gen , Células HeLa , Humanos , Lípidos/genética , Relación Estructura-Actividad , Transfección/métodos
10.
Photochem Photobiol Sci ; 11(1): 118-34, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21986918

RESUMEN

Iron has outstanding biological importance as it is required for a wide variety of essential cellular processes and, as such, is a vital nutrient. The element holds this central position by virtue of its facile redox chemistry and the high affinity of both redox states (iron II and iron III) for oxygen. These same properties also render iron toxic when its redox-active chelatable 'labile' form exceeds the normal binding capacity of the cell. Indeed, in contrast to iron bound to proteins, the intracellular labile iron (LI) can be potentially toxic especially in the presence of reactive oxygen species (ROS), as it can lead to catalytic formation of oxygen-derived free radicals such as hydroxyl radical that ultimately overwhelm the cellular antioxidant defense mechanisms and lead to cell damage. While intracellular iron homeostasis and body iron balance are tightly regulated to minimise the presence of potentially toxic LI, under conditions of oxidative stress and certain pathologies, iron homeostasis is severely altered. This alteration manifests itself in several ways, one of which is an increase in the intracellular level of potentially harmful LI. For example acute exposure of skin cells to ultraviolet A (UVA, 320-400 nm), the oxidising component of sunlight provokes an immediate increase in the available pool of intracellular LI that appears to play a key role in the increased susceptibility of skin cells to UVA-mediated oxidative membrane damage and necrotic cell death. The main purpose of this overview is to bring together some of the new findings related to intracellular LI distribution and trafficking under physiological and patho-physiological conditions as well as to discuss mechanisms and consequences of oxidant-induced alterations in the intracellular pool of LI, as exemplified by UVA radiation.


Asunto(s)
Hierro/fisiología , Estrés Oxidativo , Luz Solar , Rayos Ultravioleta , Homeostasis , Fracciones Subcelulares/metabolismo
11.
Antioxidants (Basel) ; 11(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35326121

RESUMEN

Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.

12.
Front Med (Lausanne) ; 9: 985141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36314015

RESUMEN

Iron is a double-edged sword. It is vital for all that's living, yet its deficiency or overload can be fatal. In humans, iron homeostasis is tightly regulated at both cellular and systemic levels. Extracellular vesicles (EVs), now known as major players in cellular communication, potentially play an important role in regulating iron metabolism. The gut microbiota was also recently reported to impact the iron metabolism process and indirectly participate in regulating iron homeostasis, yet there is no proof of whether or not microbiota-derived EVs interfere in this relationship. In this review, we discuss the implication of EVs on iron metabolism and homeostasis. We elaborate on the blooming role of gut microbiota in iron homeostasis while focusing on the possible EVs contribution. We conclude that EVs are extensively involved in the complex iron metabolism process; they carry ferritin and express transferrin receptors. Bone marrow-derived EVs even induce hepcidin expression in ß-thalassemia. The gut microbiota, in turn, affects iron homeostasis on the level of iron absorption and possibly macrophage iron recycling, with still no proof of the interference of EVs. This review is the first step toward understanding the multiplex iron metabolism process. Targeting extracellular vesicles and gut microbiota-derived extracellular vesicles will be a huge challenge to treat many diseases related to iron metabolism alteration.

13.
ACS Bio Med Chem Au ; 2(6): 642-654, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36573095

RESUMEN

Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or in vivo imaging, e.g., in fluorescence-guided surgery. Among other types of cyanine dyes, meso-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of meso-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.

14.
ACS Omega ; 7(16): 13750-13777, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35559172

RESUMEN

We report on the synthesis and spectroscopic characterization of a new series of coordinating monothiosemicarbazones incorporating aromatic backbones, featuring O/N/S donor centers monosubstituted with different aliphatic, aromatic, fluorinated, and amine-functionalized groups at their N centers. Their ability to bind metal ions such as Zn(II) and Ga(III) was explored, and the formation of two different coordination isomers of the Zn(II) complex was demonstrated by X-ray diffraction studies using synchrotron radiation. These studies showed the planar geometry for the coordinated mono(thiosemicarbazone) ligand and that the metal center can adopt either a heavily distorted tetrahedral Zn center (placed in an N/S/S/N environment, with CN = 4) or a pseudo-octahedral geometry, where the Zn(II) center is in the O/N/S/S/N/O environment, and CN = 6. Furthermore, 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT) assays and cellular imaging in living cells were subsequently performed in two different cancer cell lines: PC-3 (a standard cell line derived from a bone metastasis of a stage IV prostate cancer) and EMT6 (a commercial murine mammary carcinoma cell line). The radiolabeling of new functional and aromatic monothiosemicarbazones with either gallium-68 (under pH control) or fluorine-18 is discussed. The potential of this class of compounds to act as synthetic scaffolds for molecular imaging agents of relevance to positron emission tomography was evaluated in vitro, and the cellular uptake of a simultaneously fluorinated and [68Ga]-labeled mono(thiosemicarbazone) was investigated and is reported here.

15.
J Photochem Photobiol B ; 226: 112350, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34785489

RESUMEN

Solar UVA irradiation-generated reactive oxygen species (ROS) induces the expression of matrix metalloproteinase 1 (MMP-1), leading to photoaging, however the molecular mechanism remains unclear. In the present study, we found that eriodictyol remarkably reduces UVA-mediated ROS generation and protects the skin cells from oxidative damage and the ensuing cell death. Moreover eriodictyol pretreatment significantly down-regulates the UVA-induced MMP-1 expression, and lowers the inflammatory responses within the skin cells. Pretreatment with eriodictyol upregulates the expression of tissue inhibitory metalloproteinase 1 (TIMP-1) and collagen-I (COL-1) at the transcriptional level in a dose-dependent manner. UVA-induced phosphorylation levels of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 leading to increased MMP-1 expression are significantly reduced in eriodictyol-treated skin cells. In addition, eriodictyol pretreatment significantly suppresses inflammatory cytokines and inhibits the activation of MAPK signaling cascades in skin cells. Taken together, our results demonstrate that eriodictyol has both potent anti-inflammatory and anti-photoaging effects.


Asunto(s)
Flavanonas
16.
Photodermatol Photoimmunol Photomed ; 27(5): 231-5, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21950626

RESUMEN

BACKGROUND/PURPOSE: Human skin is constantly exposed to ultraviolet A (UVA), which can generate reactive oxygen species and cause iron release from ferritin, leading to oxidative damage in biomolecules. This is particularly true in post-menopausal skin due to an increase in iron as a result of menopause. As iron is generally released through desquamation, the skin becomes a main portal for the release of excess iron in this age group. In the present study, we examined a strategy for controlling UVA- and iron-induced oxidative stress in skin using a keratinocyte post-menopausal cellular model system. METHODS: Keratinocytes that had been cultured under normal or high-iron, low-estrogen conditions were treated with (2-nitrophenyl) ethyl pyridoxal isonicotinoyl hydrazone (2-PNE-PIH). 2-PNE-PIH is a caged-iron chelator that does not normally bind iron but can be activated by UVA radiation to bind iron. Following incubation with 2-PNE-PIH, the cells were exposed to 5 J/cm² UVA and then measured for changes in lipid peroxidation and ferritin levels. RESULTS: 2-PNE-PIH protected keratinocytes against UVA-induced lipid peroxidation and ferritin depletion. Further, 2-PNE-PIH was neither cytotoxic nor did it alter iron metabolism. CONCLUSION: 2-PNE-PIH may be a useful deterrent against UVA-induced oxidative stress in post-menopausal women.


Asunto(s)
Epidermis/metabolismo , Quelantes del Hierro/farmacología , Hierro/metabolismo , Queratinocitos/metabolismo , Peroxidación de Lípido , Posmenopausia/metabolismo , Rayos Ultravioleta/efectos adversos , Línea Celular , Epidermis/patología , Femenino , Ferritinas/metabolismo , Humanos , Queratinocitos/patología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Persona de Mediana Edad , Proyectos Piloto
17.
Front Cell Dev Biol ; 9: 598717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644041

RESUMEN

Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a "switch on- switch off" procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.

18.
Antioxid Redox Signal ; 34(17): 1355-1367, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32517496

RESUMEN

Aims: Drug-induced liver injury, especially acetaminophen (APAP)-induced liver injury, is a leading cause of liver failure worldwide. Mouse models were used to evaluate the effect of microelement selenium levels on the cellular redox environment and consequent hepatotoxicity of APAP. Results: APAP treatment affected mouse liver selenoprotein thioredoxin reductase (TrxR) activity and glutathione (GSH) level in a dose- and time-dependent manner. Decrease of mouse liver TrxR activity and glutathione level was an early event, and occurred concurrently with liver damage. The decreases in the GSH/glutathione disulfide form (GSSG) ratio and TrxR activity, and the increase of protein S-glutathionylation were correlated with the APAP-induced hepatotoxicity. Moreover, in APAP-treated mice both mild deprivation and excess supplementation with selenium increased the severity of liver injury compared with those observed in mice with normal dietary selenium levels. An increase in the oxidation state of the TrxR-mediated system, including cytosolic thioredoxin1 (Trx1) and peroxiredoxin1/2 (Prx1/2), and mitochondrial Trx2 and Prx3, was found in the livers from mice reared on selenium-deficient and excess selenium-supplemented diets upon APAP treatment. Innovation: This work demonstrates that both Trx and GSH systems are susceptible to APAP toxicity in vivo, and that the thiol-dependent redox environment is a key factor in determining the extent of APAP-induced hepatotoxicity. Dietary selenium and selenoproteins play critical roles in protecting mice against APAP overdose. Conclusion: APAP treatment in mice interrupts the function of the Trx and GSH systems, which are the main enzymatic antioxidant systems, in both the cytosol and mitochondria. Dietary selenium deficiency and excess supplementation both increase the risk of APAP-induced hepatotoxicity.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Glutatión/metabolismo , Selenio/administración & dosificación , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Citosol/metabolismo , Dieta , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Selenio/efectos adversos , Factores de Tiempo
19.
Free Radic Biol Med ; 169: 304-316, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33882335

RESUMEN

Senescence is a cellular process that can be initiated by certain stressors such as UVA irradiation. The mechanism by which skin cells protect themselves from the UVA-induced senescence has not been fully investigated. Here, we demonstrate that Bach2 modulates the extent of UVA-induced photoaging through regulation of autophagy in skin fibroblasts. In fact chronic exposure of skin fibroblasts to UVA resulted in a significant decrease in Bach2 expression, both in vitro and in vivo. In addition, knockdown of Bach2 in skin fibroblasts led to an increased expression of cell senescence-related genes, which further enhanced the UVA irradiation-induced photoaging. On the other hand, the overexpression of Bach2 resulted in a decrease in the expression of cell senescence-related genes. We also demonstrate that the knockdown of Bach2 in skin fibroblasts can lead to a decreased expression of autophagy-related genes and vice versa, suggesting that autophagy is involved in Bach2-mediated regulation of senescence in skin fibroblasts. Additionally, inhibition of autophagy with autophagy inhibitor 3-MA suppressed the expression of autophagy-related proteins and promoted cell senescence. Furthermore, knockout of Atg5 or Atg7 in embryonic mouse fibroblasts led to a significant increase in the expression of cell senescence-related genes. Immunoprecipitation assays further demonstrated that Bach2 directly interacts with Beclin-1, Atg3, Atg7, and LC3 in fibroblasts. Taken together, these findings revealed a critical role for Bach2 in suppressing the UVA irradiation-induced cell senescence via autophagy in skin fibroblasts. Bach2 can therefore be a potential target for the therapy of UV-induced photoaging because of its ability to regulate the process of autophagy in the skin.


Asunto(s)
Envejecimiento de la Piel , Enfermedades de la Piel , Animales , Autofagia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Cultivadas , Fibroblastos , Ratones , Piel , Envejecimiento de la Piel/genética , Rayos Ultravioleta/efectos adversos
20.
Metallomics ; 11(3): 656-665, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30778428

RESUMEN

Mitochondrial labile iron (LI) is a major contributor to the susceptibility of skin fibroblasts to ultraviolet A (UVA)-induced oxidative damage leading to necrotic cell death via ATP depletion. Mitochondria iron overload is a key feature of the neurodegenerative disease Friedreich's ataxia (FRDA). Here we show that cultured primary skin fibroblasts from FRDA patients are 4 to 10-fold more sensitive to UVA-induced death than their healthy counterparts. We demonstrate that FRDA cells display higher levels of mitochondrial LI (up to 6-fold on average compared to healthy counterparts) and show higher increase in mitochondrial reactive oxygen species (ROS) generation after UVA irradiation (up to 2-fold on average), consistent with their differential sensitivity to UVA. Pre-treatment of the FRDA cells with a bespoke mitochondrial iron chelator fully abrogates the UVA-mediated cell death and reduces UVA-induced damage to mitochondrial membrane and the resulting ATP depletion by a factor of 2. Our results reveal a link between FRDA as a disease of mitochondrial iron overload and sensitivity to UVA of skin fibroblasts. Our findings suggest that the high levels of mitochondrial LI in FRDA cells which contribute to high levels of mitochondrial ROS production after UVA irradiation are likely to play a crucial role in the marked sensitivity of these cells to UVA-induced oxidative damage. This study may have implications not only for FRDA but also for other diseases of mitochondrial iron overload, with the view to develop topical mitochondria-targeted iron chelators as skin photoprotective agents.


Asunto(s)
Fibroblastos , Ataxia de Friedreich/metabolismo , Hierro , Mitocondrias , Rayos Ultravioleta/efectos adversos , Adulto , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Humanos , Hierro/metabolismo , Hierro/fisiología , Quelantes del Hierro/farmacología , Masculino , Mitocondrias/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Piel/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA