Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Invertebr Pathol ; 164: 69-77, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31078548

RESUMEN

Entomopathogenic Ascomycetes: Hypocreales fungi occur worldwide in the soil; however, the abundance and distribution of these fungi in a vineyard environment is unknown. A survey of Australian vineyards was carried out in order to isolate and identify entomopathogenic fungi. A total of 240 soil samples were taken from eight vineyards in two states (New South Wales and Victoria). Insect baiting (using Tenebrio molitor) and soil dilution methods were used to isolate Beauveria spp. and Metarhizium spp. from all soil samples. Of the 240 soil samples, 60% contained either Beauveria spp. (26%) or Metarhizium spp. (33%). Species of Beauveria and Metarhizium were identified by sequencing the B locus nuclear intergenic region (Bloc) and elongation factor-1 alpha (EFT1) regions, respectively. Three Beauveria species (B. bassiana, B. australis and B. pseudobassiana) and six Metarhizium species (M. guizhouense, M. robertsii, M. brunneum, M. flavoviride var. pemphigi, M. pingshaense and M. majus) were identified. A new sister clade made up of six isolates was identified within B. australis. Two potentially new phylogenetic species (six isolates each) were found within the B. bassiana clade. This study revealed a diverse community of entomopathogenic fungi in sampled Australian vineyard soils.


Asunto(s)
Beauveria/aislamiento & purificación , Granjas , Metarhizium/aislamiento & purificación , Microbiología del Suelo , Animales , Australia , Beauveria/clasificación , Beauveria/genética , Biodiversidad , ADN Intergénico/genética , Genes Fúngicos , Hypocreales/clasificación , Hypocreales/aislamiento & purificación , Insectos/microbiología , Larva/microbiología , Metarhizium/clasificación , Metarhizium/genética , Factor 1 de Elongación Peptídica/genética , Filogenia
2.
BMC Plant Biol ; 18(1): 360, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30563461

RESUMEN

BACKGROUND: Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a major insect pest that negatively impacts commercial grapevine performance worldwide. Consequently, the use of phylloxera resistant rootstocks is an essential component of vineyard management. However, the majority of commercially available rootstocks used in viticulture production provide limited levels of grape phylloxera resistance, in part due to the adaptation of phylloxera biotypes to different Vitis species. Therefore, there is pressing need to develop new rootstocks better adapted to specific grape growing regions with complete resistance to grape phylloxera biotypes. RESULTS: Grapevine rootstock breeding material, including an accession of Vitis cinerea and V. aestivalis, DRX55 ([M. rotundifolia x V. vinifera] x open pollinated) and MS27-31 (M. rotundifolia specific hybrid), provided complete resistance to grape phylloxera in potted plant assays. To map the genetic factor(s) of grape phylloxera resistance, a F1 V. cinerea x V. vinifera Riesling population was screened for resistance. Heritability analysis indicates that the V. cinerea accession contained a single allele referred as RESISTANCE TO DAKTULOSPHAIRA VITIFOLIAE 2 (RDV2) that confers grape phylloxera resistance. Using genetic maps constructed with pseudo-testcross markers for V. cinerea and Riesling, a single phylloxera resistance locus was identified in V. cinerea. After validating SNPs at the RDV2 locus, interval and linkage mapping showed that grape phylloxera resistance mapped to linkage group 14 at position 16.7 cM. CONCLUSION: The mapping of RDV2 and the validation of markers linked to grape phylloxera resistance provides the basis to breed new rootstocks via marker-assisted selection that improve vineyard performance.


Asunto(s)
Hemípteros , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , Vitis/genética , Alelos , Animales , Mapeo Cromosómico , Reproducibilidad de los Resultados
3.
Metabolomics ; 14(10): 133, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30830473

RESUMEN

INTRODUCTION: The aphid Rhopalosiphum padi L. is a vector of Barley yellow dwarf virus (BYDV) in wheat and other economically important cereal crops. Increased atmospheric CO2 has been shown to alter plant growth and metabolism, enhancing BYDV disease in wheat. However, the biochemical influences on aphid metabolism are not known. OBJECTIVES: This work aims to determine whether altered host-plant quality, influenced by virus infection and elevated CO2, impacts aphid weight and metabolism. METHODS: Untargeted 1H NMR metabolomics coupled with multivariate statistics were employed to profile the metabolism of R. padi reared on virus-infected and non-infected (sham-inoculated) wheat grown under ambient CO2 (aCO2, 400 µmol mol-1) and future, predicted elevated CO2 (eCO2, 650 µmol mol-1) concentrations. Un-colonised wheat was also profiled to observe changes to host-plant quality (i.e., amino acids and sugars). RESULTS: The direct impacts of virus or eCO2 were compared. Virus presence increased aphid weight under aCO2 but decreased weight under eCO2; whilst eCO2 increased non-viruliferous (sham) aphid weight but decreased viruliferous aphid weight. Discriminatory metabolites due to eCO2 were succinate and sucrose (in sham wheat), glucose, choline and betaine (in infected wheat), and threonine, lactate, alanine, GABA, glutamine, glutamate and asparagine (in aphids), irrespective of virus presence. Discriminatory metabolites due to virus presence were alanine, GABA, succinate and betaine (in wheat) and threonine and lactate (in aphids), irrespective of CO2 treatment. CONCLUSION: This study confirms that virus and eCO2 alter host-plant quality, and these differences are reflected by aphid weight and metabolism.


Asunto(s)
Áfidos/metabolismo , Dióxido de Carbono/metabolismo , Luteovirus/metabolismo , Metabolómica , Triticum/metabolismo , Virosis/metabolismo , Animales , Espectroscopía de Protones por Resonancia Magnética
4.
Viruses ; 14(3)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35337056

RESUMEN

Canegrubs (Coleoptera: Scarabaeidae) are major pests of sugarcane crops in Australia, but despite long-term and intensive research, no commercially viable biological control agents have been identified. We used the RNA-Seq approach to explore the viriomes of three different species of canegrubs from central Queensland, Australia to identify potential candidates for biological control. We identified six novel RNA viruses, characterized their genomes, and inferred their evolutionary relationships with other closely related viruses. These novel viruses showed similarity to other known members from picornaviruses, benyviruses, sobemoviruses, totiviruses, and reoviruses. The abundance of viral reads varied in these libraries; for example, Dermolepida albohirtum picorna-like virus (9696 nt) was built from 83,894 assembled reads while only 1350 reads mapped to Lepidiota negatoria beny-like virus (6371 nt). Future studies are essential to determine their natural incidence in different life stages of the host, biodiversity, geographical distributions, and potential as biological control agents for these important pests of sugarcane.


Asunto(s)
Escarabajos , Virus ARN , Saccharum , Animales , Australia , Agentes de Control Biológico , Queensland , Transcriptoma
5.
Pest Manag Sci ; 74(12): 2724-2737, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29707884

RESUMEN

BACKGROUND: Surveillance strategies are often standardized and completed on grid patterns to detect pest incursions quickly; however, it may be possible to improve surveillance through more targeted observation that accounts for landscape heterogeneity, dispersal and the habitat requirements of the invading organism. We simulated pest spread at a local scale, using grape phylloxera (Daktulosphaira vitifoliae (Fitch)) as a case study, and assessed the influence of incorporating spatial heterogeneity into surveillance compared with current, standard surveillance strategies. RESULTS: Time to detection and spread within and beyond the vineyard were reduced by conducting surveys that target sampling effort in soil that is highly suitable for the invading pest in comparison with standard surveillance strategies. However, these outcomes were dependent on the virulence level of phylloxera because phylloxera is a complex pest with multiple genotypes that influence spread and detectability. CONCLUSION: Targeting surveillance strategies based on local-scale spatial heterogeneity can decrease the time to detection without increasing the survey cost, and surveillance that targets highly suitable soil is the most efficient strategy for detecting new incursions. In addition, combining targeted surveillance strategies with buffer zones and hygiene procedures, and updating surveillance strategies as additional species information becomes available, will further decrease the risk of pest spread. © 2018 Society of Chemical Industry.


Asunto(s)
Distribución Animal , Monitoreo del Ambiente , Hemípteros/fisiología , Animales , Análisis Espacial , Vitis/crecimiento & desarrollo , Viento
6.
PLoS One ; 12(6): e0178609, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28575085

RESUMEN

Piercing-sucking insects are vectors of plant pathogens, and an understanding of their feeding behaviour is crucial for studies on insect population dynamics and pathogen spread. This study examines probing behaviour of the eggplant psyllid, Acizzia solanicola (Hemiptera: Psyllidae), using the electrical penetration graph (EPG) technique, on two widespread and common hosts: eggplant (Solanum melongena) and tobacco bush (S. mauritianum). Six EPG waveforms were observed: waveform NP (non-probing phase), waveform C (pathway phase), G (feeding activities in xylem tissues), D (first contact with phloem tissues), E1 (salivation in the sieve elements) and E2 (ingestion from phloem tissues). Results showed that A. solanicola is predominantly a phloem feeder and time spent in salivation and ingestion phases (E1 and E2) differed between hosts. Feeding was enhanced on eggplant compared to tobacco bush which showed some degree of resistance, as evidenced by shorter periods of phloem ingestion, a higher propensity to return to the pathway phase once in the sieve elements and higher number of salivation events on tobacco bush. We discuss how prolonged phloem feeding could indicate the potential for A. solanicola to become an important pest of eggplant and potential pathogen vector.


Asunto(s)
Hemípteros/patogenicidad , Solanum/parasitología , Animales
7.
Front Plant Sci ; 8: 3, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28154571

RESUMEN

The major insect pest of Australian cool temperate pastures is the root-feeding insect Heteronychus arator (African black beetle, ABB). Significant pasture damage can occur even at low ABB densities (11 individuals per square meter), and often re-sowing of the whole paddock is required. Mitigation of the effects of pasture pests, and in particular subterranean species such as the larval form of ABB, can be challenging. Early detection is limited by the ability to visualize above-ground symptoms, and chemical control of insects in soil is often ineffective. This review takes a look at the historical events that molded the pastoral landscape in Australia. The importation route, changes in land management and pasture composition by European settlers may have aided the establishment of ABB in Australia. Perennial ryegrass Lolium perenne is discussed as it is one of the most important perennial agricultural grasses and is widely-sown in moderate-to-high-rainfall temperate zones of the world. Endophytic fungi from the genus Epichloë form symbiotic relationships with cool season grasses such as Lolium perenne (perennial ryegrass). They have been studied extensively and are well documented for enhancing persistence in pasture via a suite of bioactive secondary metabolites produced by the fungal symbionts. Several well-characterized secondary metabolites are discussed. Some can have negative effects on cattle (e.g., ergovaline and lolitrems) while others have been shown to benefit the host plant through deterrence of insect pests from feeding and by insecticidal activity (e.g., peramine, lolines, ergopeptines). Various control methods for ABB are also discussed, with a focus on the potential role of asexual Epichloë endophytes.

8.
J Econ Entomol ; 99(5): 1774-83, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17066812

RESUMEN

To examine seasonal changes in the abundance of grape phylloxera Daktulosphaira vitifoliae (Fitch), several sampling methods were tested at vineyards in Victoria, Australia. At a recently infested site, changes detected by root assessment, trunk trapping, and emergence trapping were closely correlated, although the largest numbers of grape phylloxera were obtained using traps that collected phylloxera emerging from soil. This trapping technique was further used to investigate changes in grape phylloxera numbers across three different sites from southeastern Australia as well as in three consecutive seasons at the same vineyard. Grape phylloxera numbers decreased as vines deteriorated; a single peak of emergence occurred in every summer. Size and timing of emergence peaks varied between sites and also between vine blocks within a site. The number of grape phylloxera trapped was correlated with degree-days. Monitoring soil temperature may provide a way of timing control options against grape phylloxera and a way of identifying peak periods when phylloxera detection surveys should be completed or when grape phylloxera are at the highest risk of spreading among vineyards.


Asunto(s)
Hemípteros , Vitis/parasitología , Animales , Australia , Geografía , Control de Insectos/métodos , Dinámica Poblacional
9.
J Plant Physiol ; 199: 96-99, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27302010

RESUMEN

Plant antioxidants ascorbate and glutathione play an important role in regulating potentially harmful reactive oxygen species produced in response to virus infection. Barley yellow dwarf virus is a widespread viral pathogen that systemically infects cereal crops including wheat, barley and oats. In addition, rising atmospheric CO2 will alter plant growth and metabolism, including many potential but not well understood effects on plant-virus interactions. In order to better understand the wheat-BYDV interaction and any potential changes under elevated CO2, the total concentration and oxidised fraction of ascorbate and glutathione was measured in leaves of a susceptible wheat cultivar (Triticum aestivum L. 'Yitpi') infected with Barley yellow dwarf virus-PAV (Padi Avenae virus) and grown under elevated CO2 in controlled environment chambers. Virus infection decreased total leaf ascorbate and glutathione concentrations and increased the fraction of oxidised ascorbate (dehydroascorbate). Elevated CO2 decreased the fraction of oxidised ascorbate. In this work, we demonstrate that systemic infection by a phloem-restricted virus weakens the antioxidant pools of ascorbate and glutathione. In addition, elevated CO2 may decrease oxidative stress, for example, from virus infection, but there was no direct evidence for an interactive effect between treatments.


Asunto(s)
Antioxidantes/metabolismo , Dióxido de Carbono/farmacología , Luteovirus/fisiología , Enfermedades de las Plantas/virología , Triticum/metabolismo , Ácido Ascórbico/metabolismo , Productos Agrícolas , Glutatión/metabolismo , Interacciones Huésped-Patógeno , Oxidación-Reducción , Triticum/efectos de los fármacos , Triticum/virología
10.
Funct Plant Biol ; 43(9): 892-902, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32480513

RESUMEN

Atmospheric CO2 concentrations are predicted to double by the end of this century. Although the effects of CO2 fertilisation in crop systems have been well studied, little is known about the specific interactions among plants, pests and pathogens under a changing climate. This growth chamber study focuses on the interactions among Barley yellow dwarf virus (BYDV), its aphid vector (Rhopalosiphum padi) and wheat (Triticum aestivum L. cv. Yitpi) under ambient (aCO2; 400µmolmol-1) or elevated (eCO2; 650µmolmol-1) CO2 concentrations. eCO2 increased the tiller number and biomass of uninoculated plants and advanced the yellowing symptoms of infected plants. Total foliar C content (percentage of the total DW) increased with eCO2 and with sham inoculation (exposed to early herbivory), whereas total N content decreased with eCO2. Liquid chromatography-mass spectrometry approaches were used to quantify the products of primary plant metabolism. eCO2 significantly increased sugars (fructose, mannitol and trehalose), irrespective of disease status, whereas virus infection significantly increased the amino acids essential to aphid diet (histidine, lysine, phenylalanine and tryptophan) irrespective of CO2 concentration. Citric acid was reduced by both eCO2 and virus infection. Both the potential positive and negative biochemical impacts on wheat, aphid and BYDV interactions are discussed.

11.
Sci Rep ; 6: 22785, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26941044

RESUMEN

Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.


Asunto(s)
Áfidos/efectos de los fármacos , Dióxido de Carbono/metabolismo , Ecosistema , Interacciones Huésped-Patógeno/efectos de los fármacos , Luteovirus/efectos de los fármacos , Triticum/efectos de los fármacos , Triticum/fisiología , Animales , Áfidos/crecimiento & desarrollo , Luteovirus/crecimiento & desarrollo , Triticum/parasitología , Triticum/virología
12.
Funct Plant Biol ; 33(5): 507-514, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-32689257

RESUMEN

Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a root-feeding pest of grapevines. In Australia, phylloxera-infested vineyards are subjected to quarantine restrictions and early detection remains vital for the timely implementation of post-outbreak quarantine protocols. Current detection methods rely on time-consuming ground surveying, which involves detailed examination of grapevine (Vitis vinifera L.) root systems. Leaf pigment composition is often a sensitive indicator of plant stress. The increasing popularity of remote sensing systems, which exploit those changes in pigments observed with plant stress, offers a real possibility for the development of a phylloxera-specific remote detection system. Our objective was to investigate changes in grapevine leaf pigments associated with phylloxera infestation and to relate any changes to appropriate reflectance indices. This was achieved with a glasshouse experiment in which the responses of two vine cultivars (Cabernet Sauvignon and Shiraz) to phylloxera infestation were compared with their responses to water and nitrogen deficiencies. The responses of leaf pigments to phylloxera infestation were also investigated in Pinot Noir and Cabernet Sauvignon grapevines grown under field conditions. A reduction in the leaf chlorophyll content and an increase in photoprotective pigment concentrations were observed in leaves of phylloxera-infested grapevines compared with uninfested vines. The photochemical reflectance index (PRI) was found to be most closely associated with the ratio of total carotenoid to chlorophyll in these vines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA