Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Hyperthermia ; 41(1): 2313492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38369302

RESUMEN

BACKGROUND: Despite the theoretical advantages of treating metastatic bone disease with microwave ablation (MWA), there are few reports characterizing microwave absorption and bioheat transfer in bone. This report describes a computational modeling-based approach to simulate directional microwave ablation (dMWA) in spine, supported by ex vivo and pilot in vivo experiments in porcine vertebral bodies. MATERIALS AND METHODS: A 3D computational model of microwave ablation within porcine vertebral bodies was developed. Ex vivo porcine vertebra experiments using a dMWA applicator measured temperatures approximately 10.1 mm radially from the applicator in the direction of MW radiation (T1) and approximately 2.4 mm in the contra-lateral direction (T2). Histologic assessment of ablated ex vivo tissue was conducted and experimental results compared to simulations. Pilot in vivo experiments in porcine vertebral bodies assessed ablation zones histologically and with CT and MRI. RESULTS: Experimental T1 and T2 temperatures were within 3-7% and 11-33% of simulated temperature values. Visible ablation zones, as indicated by grayed tissue, were smaller than those typical in other soft tissues. Posthumous MRI images of in vivo ablations showed hyperintensity. In vivo experiments illustrated the technical feasibility of creating directional microwave ablation zones in porcine vertebral body. CONCLUSION: Computational models and experimental studies illustrate the feasibility of controlled dMWA in bone tissue.


Asunto(s)
Técnicas de Ablación , Ablación por Catéter , Ablación por Radiofrecuencia , Porcinos , Animales , Técnicas de Ablación/métodos , Microondas/uso terapéutico , Simulación por Computador , Columna Vertebral/cirugía , Hígado/cirugía , Ablación por Catéter/métodos
2.
Int J Hyperthermia ; 40(1): 2255755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37710404

RESUMEN

PURPOSE: To develop a computational model of microwave ablation (MWA) with a thermal accelerant gel and apply the model toward interpreting experimental observations in ex vivo bovine and in vivo porcine liver. METHODS: A 3D coupled electromagnetic-heat transfer model was implemented to characterize thermal profiles within ex vivo bovine and in vivo porcine liver tissue during MWA with the HeatSYNC thermal accelerant. Measured temperature dependent dielectric and thermal properties of the HeatSYNC gel were applied within the model. Simulated extents of MWA zones and transient temperature profiles were compared against experimental measurements in ex vivo bovine liver. Model predictions of thermal profiles under in vivo conditions in porcine liver were used to analyze thermal ablations observed in prior experiments in porcine liver in vivo. RESULTS: Measured electrical conductivity of the HeatSYNC gel was ∼83% higher compared to liver at room temperature, with positive linear temperature dependency, indicating increased microwave absorption within HeatSYNC gel compared to tissue. In ex vivo bovine liver, model predicted ablation zone extents of (31.5 × 36) mm with the HeatSYNC, compared to (32.9 ± 2.6 × 40.2 ± 2.3) mm in experiments (volume differences 4 ± 4.1 cm3). Computational models under in vivo conditions in porcine liver suggest approximating the HeatSYNC gel spreading within liver tissue during ablations as a plausible explanation for larger ablation zones observed in prior in vivo studies. CONCLUSION: Computational models of MWA with thermal accelerants provide insight into the impact of accelerant on MWA, and with further development, could predict ablations with a variety of gel injection sites.


Asunto(s)
Hígado , Microondas , Animales , Bovinos , Porcinos , Microondas/uso terapéutico , Hígado/cirugía , Simulación por Computador , Conductividad Eléctrica , Calor
3.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904896

RESUMEN

Heart rate variability (HRV) features support several clinical applications, including sleep staging, and ballistocardiograms (BCGs) can be used to unobtrusively estimate these features. Electrocardiography is the traditional clinical standard for HRV estimation, but BCGs and electrocardiograms (ECGs) yield different estimates for heartbeat intervals (HBIs), leading to differences in calculated HRV parameters. This study examines the viability of using BCG-based HRV features for sleep staging by quantifying the impact of these timing differences on the resulting parameters of interest. We introduced a range of synthetic time offsets to simulate the differences between BCG- and ECG-based heartbeat intervals, and the resulting HRV features are used to perform sleep staging. Subsequently, we draw a relationship between the mean absolute error in HBIs and the resulting sleep-staging performances. We also extend our previous work in heartbeat interval identification algorithms to demonstrate that our simulated timing jitters are close representatives of errors between heartbeat interval measurements. This work indicates that BCG-based sleep staging can produce accuracies comparable to ECG-based techniques such that at an HBI error range of up to 60 ms, the sleep-scoring error could increase from 17% to 25% based on one of the scenarios we examined.


Asunto(s)
Vacuna BCG , Balistocardiografía , Frecuencia Cardíaca/fisiología , Electrocardiografía/métodos , Fases del Sueño/fisiología , Algoritmos
4.
Int J Hyperthermia ; 39(1): 664-674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465811

RESUMEN

Microwave ablation (MWA) is becoming an increasingly important minimally invasive treatment option for localized tumors in many organ systems due to recent advancements in microwave technology that have conferred many advantages over other tumor ablation modalities. Despite these improvements in technology and development of applicators for site-specific tumor applications, the vast majority of commercially available MWA applicators are generally designed to create large-volume, symmetric, ellipsoid or spherically-shaped treatment zones and often lack the consistency, predictability, and spatial control needed to treat tumor targets near critical structures that are vulnerable to inadvertent thermal injury. The relatively new development and ongoing translation of directional microwave ablation (DMWA) technology, however, has the potential to confer an added level of control over the treatment zone shape relative to applicator position, and shows great promise to expand MWA's clinical applicability in treating tumors in challenging locations. This paper presents a review of the industry-standard commercially available MWA technology, its clinical applications, and its limitations when used for minimally-invasive tumor treatment in medical practice followed by discussion of new advancements in experimental directional microwave ablation (DMWA) technology, various techniques and approaches to its use, and examples of how this technology may be used to treat tumors in challenging locations that may otherwise preclude safe treatment by conventional omni-directional MWA devices.


Asunto(s)
Técnicas de Ablación , Neoplasias , Ablación por Radiofrecuencia , Técnicas de Ablación/métodos , Humanos , Microondas/uso terapéutico , Neoplasias/cirugía
5.
Int J Hyperthermia ; 39(1): 1264-1275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137605

RESUMEN

PURPOSE: To assess the feasibility of delivering microwave ablation for targeted treatment of aldosterone producing adenomas using image-based computational models. METHODS: We curated an anonymized dataset of diagnostic 11C-metomidate PET/CT images of 14 patients with aldosterone producing adenomas (APA). A semi-automated approach was developed to segment the APA, adrenal gland, and adjacent organs within 2 cm of the APA boundary. The segmented volumes were used to implement patient-specific 3D electromagnetic-bioheat transfer models of microwave ablation with a 2.45 GHz directional microwave ablation applicator. Ablation profiles were quantitatively assessed based on the extent of the APA target encompassed by an ablative thermal dose, while limiting thermal damage to the adjacent normal adrenal tissue and sensitive critical structures. RESULTS: Across the 14 patients, adrenal tumor volumes ranged between 393 mm3 and 2,395 mm3. On average, 70% of the adrenal tumor volumes received an ablative thermal dose of 240CEM43, while limiting thermal damage to non-target structures, and thermally sparing 83.5-96.4% of normal adrenal gland. Average ablation duration was 293 s (range: 60-600 s). Simulations indicated coverage of the APA with an ablative dose was limited when the axis of the ablation applicator was not well aligned with the major axis of the targeted APA. CONCLUSIONS: Image-based computational models demonstrate the potential for delivering microwave ablation to APA targets within the adrenal gland, while limiting thermal damage to surrounding non-target structures.


Asunto(s)
Adenoma , Neoplasias de las Glándulas Suprarrenales , Neoplasias de las Glándulas Suprarrenales/diagnóstico por imagen , Neoplasias de las Glándulas Suprarrenales/cirugía , Aldosterona , Simulación por Computador , Computadores , Humanos , Microondas/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones
6.
Int J Hyperthermia ; 39(1): 584-594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35435078

RESUMEN

PURPOSE: Bio-effects following thermal treatments are a function of the achieved temperature profile in tissue, which can be estimated across tumor volumes with real-time MRI thermometry (MRIT). Here, we report on expansion of a previously developed small-animal microwave hyperthermia system integrated with MRIT for delivering thermal ablation to subcutaneously implanted tumors in mice. METHODS: Computational models were employed to assess suitability of the 2.45 GHz microwave applicators for delivering ablation to subcutaneous tumor targets in mice. Phantoms and ex-vivo tissues were heated to temperatures in the range 47-67 °C with custom-made microwave applicators for validating MRIT with the proton resonance frequency shift method against fiberoptic thermometry. HAC15 tumors implanted in nude mice (n = 6) were ablated in vivo and monitored with MRIT in multiple planes. One day post ablation, animals were euthanized, and excised tumors were processed for viability assessment. RESULTS: Average absolute error between temperatures from fiberoptic sensors and MRIT was 0.6 °C across all ex-vivo ablations. During in-vivo experiments, tumors with volumes ranging between 5.4-35.9 mm3 (mean 14.2 mm3) were ablated (duration: 103-150 s) to achieve 55 °C at the tumor boundary. Thermal doses ≥240 CEM43 were achieved across 90.7-98.0% of tumor volumes for four cases. Ablations were incomplete for remaining cases, attributed to motion-affected thermometry. Thermal dose-based ablative tumor coverage agreed with viability assessment of excised tumors. CONCLUSIONS: We have developed a system for delivering microwave ablation to subcutaneous tumors in small animals under MRIT guidance and demonstrated its performance in-vivo.


Asunto(s)
Neoplasias , Termometría , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Desnudos , Microondas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía
7.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408154

RESUMEN

Dehydration in the human body arises due to inadequate replenishment of fluids. An appropriate level of hydration is essential for optimal functioning of the human body, and complications ranging from mild discomfort to, in severe cases, death, could result from a neglected imbalance in fluid levels. Regular and accurate monitoring of hydration status can provide meaningful information for people operating in stressful environmental conditions, such as athletes, military professionals and the elderly. In this study, we propose a non-invasive hydration monitoring technique employing non-ionizing electromagnetic power in the microwave band to estimate the changes in the water content of the whole body. Specifically, we investigate changes in the attenuation coefficient in the frequency range 2-3.5 GHz between a pair of planar antennas positioned across a participant's arm during various states of hydration. Twenty healthy young adults (10M, 10F) underwent controlled hypohydration and euhydration control bouts. The attenuation coefficient was compared among trials and used to predict changes in body mass. Volunteers lost 1.50±0.44% and 0.49±0.54% body mass during hypohydration and euhydration, respectively. The microwave transmission-based attenuation coefficient (2-3.5 GHz) was accurate in predicting changes in hydration status. The corresponding regression analysis demonstrates that building separate estimation models for dehydration and rehydration phases offer better predictive performance (88%) relative to a common model for both the phases (76%).


Asunto(s)
Deshidratación , Microondas , Anciano , Atletas , Deshidratación/etiología , Fluidoterapia/efectos adversos , Humanos , Agua , Adulto Joven
8.
Int J Hyperthermia ; 38(1): 409-420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33719808

RESUMEN

PURPOSE: To study the differences between continuous and short-pulse mode microwave ablation (MWA). METHODS: We built a computational model for MWA including a 200 mm long and 14 G antenna from Amica-Gen and solved an electromagnetic-thermal coupled problem using COMSOL Multiphysics. We compared the coagulation zone (CZ) sizes created with pulsed and continuous modes under ex vivo and in vivo conditions. The model was used to compare long vs. short pulses, and 1000 W high-powered short pulses. Ex vivo experiments were conducted to validate the model. RESULTS: The computational models predicted the axial diameter of the CZ with an error of 2-3% and overestimated the transverse diameter by 9-11%. For short pulses, the ex vivo computer modeling results showed a trend toward larger CZ when duty cycles decreases. In general, short pulsed mode yielded higher CZ diameters and volumes than continuous mode, but the differences were not significant (<5%), as in terms of CZ sphericity. The same trends were observed in the simulations mimicking in vivo conditions. Both CZ diameter and sphericity were similar with short and long pulses. Short 1000 W pulses produced smaller sphericity and similar CZ sizes under in vivo and ex vivo conditions. CONCLUSIONS: The characteristics of the CZ created by continuous and pulsed MWA show no significant differences from ex vivo experiments and computer simulations. The proposed idea of enlarging coagulation zones and improving their sphericity in pulsed mode was not evident in this study.


Asunto(s)
Técnicas de Ablación , Ablación por Catéter , Ablación por Radiofrecuencia , Simulación por Computador , Computadores , Hígado/cirugía , Microondas
9.
J Vasc Interv Radiol ; 31(7): 1170-1177.e2, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32171539

RESUMEN

PURPOSE: To experimentally characterize a microwave (MW) ablation applicator designed to produce directional ablation zones. MATERIALS AND METHODS: Using a 14-gauge, 2.45-GHz side-firing MW ablation applicator, 36 ex vivo bovine liver ablations were performed. Ablations were performed at 60 W, 80 W, and 100 W for 3, 5, and 10 minutes (n = 4 per combination). Ablation zone forward and backward depth and width were measured and directivity was calculated as the ratio of forward to backward depth. Thirteen in vivo ablations were performed in 2 domestic swine with the applicator either inserted into the liver (80 W, 5 min, n = 3; 100 W, 5 min, n = 3; 100 W, 10 min, n = 2) or placed on the surface of the liver with a nontarget tissue placed on the back side of the applicator (80 W, 5 min, n = 5). The animals were immediately euthanized after the procedure; the livers were harvested and sectioned perpendicular to the axis of the applicator. In vivo ablation zones were measured following viability staining and assessed on histopathology. RESULTS: Mean ex vivo ablation forward depth was 8.3-15.5 mm. No backward heating was observed at 60 W, 3-5 minutes; directivity was 4.7-11.0 for the other power and time combinations. In vivo ablation forward depth was 10.3-11.5 mm, and directivity was 11.5-16.1. No visible or microscopic thermal damage to nontarget tissues in direct contact with the back side of the applicator was observed. CONCLUSIONS: The side-firing MW ablation applicator can create directional ablation zones in ex vivo and in vivo tissues.


Asunto(s)
Técnicas de Ablación/instrumentación , Hígado/cirugía , Microondas , Irrigación Terapéutica/instrumentación , Técnicas de Ablación/efectos adversos , Animales , Bovinos , Diseño de Equipo , Femenino , Hígado/patología , Ensayo de Materiales , Microondas/efectos adversos , Modelos Animales , Sus scrofa , Irrigación Terapéutica/efectos adversos , Supervivencia Tisular
10.
Int J Hyperthermia ; 37(1): 1131-1138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32996794

RESUMEN

PURPOSE: To compare the size of the coagulation (CZ) and periablational (PZ) zones created with two commercially available devices in clinical use for radiofrequency (RFA) and microwave ablation (MWA), respectively. METHODS: Computer models were used to simulate RFA with a 3-cm Cool-tip applicator and MWA with an Amica-Gen applicator. The Arrhenius model was used to compute the damage index (Ω). CZ was considered when Ω > 4.6 (>99% of damaged cells). Regions with 0.6<Ω < 2.1 were considered as the PZ (tissue that has undergone moderate sub-ablative hyperthermia). The ratio of PZ volume to CZ volume (PZ/CZ) was regarded as a measure of performance, since a low value implies achieving a large CZ while keeping the PZ small. RESULTS: Ten-min RFA (51 W) created smaller periablational zones than 10-min MWA (11.3 cm3 vs. 17.2-22.9 cm3, for 60-100 W MWA, respectively). Prolonging duration from 5 to 10 min increased the PZ in MWA more than in RFA (2.7 cm3 for RFA vs. 8.3-11.9 cm3 for 60-100 W MWA, respectively). PZ/CZ for RFA were relatively high (65-69%), regardless of ablation time, while those for MWA were highly dependent on the duration (increase of up to 25% between 5 and 10 min) and on the applied power (smaller values as power was raised, 102% for 60 W vs. 81% for 100 W, both for 10 min). The lowest PZ/CZ across all settings was 56%, obtained with 100 W-5 min MWA. CONCLUSIONS: Although RFA creates smaller periablational zones than MWA, 100 W-5 min MWA provides the lowest PZ/CZ.


Asunto(s)
Ablación por Catéter , Hipertermia Inducida , Ablación por Radiofrecuencia , Computadores , Microondas
11.
Int J Hyperthermia ; 36(1): 905-914, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31466482

RESUMEN

Objective: To investigate the feasibility and efficacy of localized, subtotal, cortical-sparing microwave thermal ablation (MTA) as a potential curative management for primary aldosteronism. The study investigated with equal importance the selected ablation of small volumes of adrenal cortex while sparing adjacent cortex. Method: An in-vivo study was carried out in swine (n = 8) where MTA was applied under direct visualization, to the adrenal glands at 45 W or 70 W for 60 s, using a lateral, side-firing probe and a non-penetrative approach. Animals were survived for 48 h post-procedurally. Animals were investigated for markers of histological, immunohistochemical and biochemical evidence of adrenal function and adrenal damage by assessing samples drawn intra-operatively and at the time of euthanasia. Results: Selected MTA (70 W for 60 s) successfully ablated small adrenocortical volumes (∼0.8 cm3) characterized by coagulative necrosis and abnormal expression of functional markers (CYP11B1 and CYP17). Non-ablated, adjacent cortex was not affected and preserved normal expression of functional markers, without increased expression of markers of heat damage (HSP-70 and HMGB-1). Limited adrenal medullary damage was demonstrated histologically, clinically and biochemically. Conclusion: MTA offers potential as an efficient methodology for delivering targeted subtotal cortical-sparing adrenal ablation. Image-guided targeted MTA may also represent a safe future modality for curative management of PA, in the setting of both unilateral and bilateral disease.


Asunto(s)
Técnicas de Ablación , Hiperaldosteronismo/terapia , Hipertermia Inducida , Microondas/uso terapéutico , Corteza Suprarrenal/cirugía , Hormona Adrenocorticotrópica/sangre , Aldosterona/sangre , Animales , Hidrocortisona/sangre , Hiperaldosteronismo/sangre , Masculino , Metanefrina/sangre , Normetanefrina/sangre , Porcinos
12.
Int J Hyperthermia ; 34(3): 250-260, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28605946

RESUMEN

PURPOSE: Currently available hyperthermia technology is not well suited to treating cancer malignancies in the intact breast. This study investigates a microwave applicator incorporating multiple patch antennas, with the goal of facilitating controllable power deposition profiles for treating lesions at diverse locations within the intact breast. MATERIALS AND METHODS: A 3D-computational model was implemented to assess power deposition profiles with 915 MHz applicators incorporating a hemispheric groundplane and configurations of 2, 4, 8, 12, 16 and 20 antennas. Hemispheric breast models of 90 mm and 150 mm diameter were considered, where cuboid target volumes of 10 mm edge length (1 cm3) and 30 mm edge length (27 cm3) were positioned at the centre of the breast, and also located 15 mm from the chest wall. The average power absorption (αPA) ratio expressed as the ratio of the PA in the target volume and in the full breast was evaluated. A 4-antenna proof-of-concept array was fabricated and experimentally evaluated. RESULTS: Computational models identified an optimal inter-antenna spacing of 22.5° along the applicator circumference. Applicators with 8 and 12 antennas excited with constant phase presented the highest αPA at centrally located and deep-seated targets, respectively. Experimental measurements with a 4-antenna proof-of-concept array illustrated the potential for electrically steering power deposition profiles by adjusting the relative phase of the signal at antenna inputs. CONCLUSIONS: Computational models and experimental results suggest that the proposed applicator may have potential for delivering conformal thermal therapy in the intact breast.


Asunto(s)
Mama/anatomía & histología , Hipertermia Inducida/métodos , Mama/patología , Femenino , Humanos , Modelos Teóricos
13.
Int J Hyperthermia ; 34(4): 341-351, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28728442

RESUMEN

PURPOSE: Integrating small-animal experimental hyperthermia instrumentation with magnetic resonance imaging (MRI) affords real-time monitoring of spatial temperature profiles. This study reports on the development and preliminary in vivo characterisation of a 2.45 GHz microwave hyperthermia system for pre-clinical small animal investigations, integrated within a 14 T ultra-high-field MRI scanner. MATERIALS AND METHODS: The presented system incorporates a 3.5 mm (OD) directional microwave hyperthermia antenna, positioned adjacent to the small-animal target, radiating microwave energy for localised heating of subcutaneous tumours. The applicator is integrated within the 30 mm bore of the MRI system. 3D electromagnetic and biothermal simulations were implemented to characterise hyperthermia profiles from the directional microwave antenna. Experiments in tissue mimicking phantoms were performed to assess hyperthermia profiles and validate MR thermometry against fibre-optic temperature measurements. The feasibility of delivering in vivo hyperthermia exposures to subcutaneous 4T1 tumours in experimental mice under simultaneous MR thermometry guidance was assessed. RESULTS: Simulations and experiments in tissue mimicking phantoms demonstrated the feasibility of heating 21-982 mm3 targets with 8-12 W input power. Minimal susceptibility and electrical artefacts introduced by the hyperthermia applicator were observed on MR imaging. MR thermometry was in excellent agreement with fibre-optic temperatures measurements (max. discrepancy ≤0.6 °C). Heating experiments with the reported system demonstrated the feasibility of heating subcutaneous tumours in vivo with simultaneous MR thermometry. CONCLUSIONS: A platform for small-animal hyperthermia investigations under ultra-high-field MR thermometry was developed and applied to heating subcutaneous tumours in vivo.


Asunto(s)
Hipertermia Inducida/métodos , Animales , Línea Celular Tumoral , Análisis de Elementos Finitos , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Modelos Teóricos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Termometría
14.
Int J Hyperthermia ; 33(1): 51-60, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27380439

RESUMEN

PURPOSE: Microwave ablation (MWA) applicators capable of creating directional heating patterns offer the potential of simplifying treatment of targets in proximity to critical structures and avoiding the need for piercing the tumour volume. This work reports on improved directional MWA antennas with the objectives of minimising device diameter for percutaneous use (≤ ∼13 gauge) and yielding larger ablation zones. METHODS: Two directional MWA antenna designs, with a modified monopole radiating element and spherical and parabolic reflectors are proposed. A 3D-coupled electromagnetic heat transfer with temperature-dependent material properties was implemented to characterise MWA at 40 and 77 W, for 5 and 10 min. Simulations were also used to assess antenna impedance matching within liver, kidney, lung, bone and brain tissue. The two antenna designs were fabricated and experimentally evaluated with ablations in ex vivo tissue at the two power levels and treatment durations (n = 5 repetitions for each group). RESULTS: The computed specific absorption rate (SAR) patterns for both antennas were similar, although simulations indicated slightly greater forward penetration for the parabolic antenna. Based on simulations for antennas inserted within different tissues, the proposed antenna design appears to offer good impedance matching for a variety of tissue types. Experiments in ex vivo tissue showed radial ablation depths of 19 ± 0.9 mm in the forward direction for the applicator with spherical reflector and 18.7 ± 0.7 mm for the applicator with parabolic reflector. CONCLUSION: These results suggest the applicator may be suitable for creating localised directional ablation zones for treating small and medium-sized targets with a percutaneous approach.


Asunto(s)
Técnicas de Ablación/instrumentación , Diseño de Equipo , Microondas , Animales , Huesos/cirugía , Encéfalo/cirugía , Bovinos , Riñón/cirugía , Hígado/cirugía , Pulmón/cirugía , Modelos Teóricos , Músculos/cirugía , Porcinos
15.
Int J Hyperthermia ; 33(1): 74-82, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27431040

RESUMEN

INTRODUCTION: For computational models of microwave ablation (MWA), knowledge of the antenna design is necessary, but the proprietary design of clinical applicators is often unknown. We characterised the specific absorption rate (SAR) during MWA experimentally and compared to a multi-physics simulation. METHODS: An infrared (IR) camera was used to measure SAR during MWA within a split ex vivo liver model. Perseon Medical's short-tip (ST) or long-tip (LT) MWA antenna were placed on top of a tissue sample (n = 6), and microwave power (15 W) was applied for 6 min, while intermittently interrupting power. Tissue surface temperature was recorded via IR camera (3.3 fps, 320 × 240 resolution). SAR was calculated intermittently based on temperature slope before and after power interruption. Temperature and SAR data were compared to simulation results. RESULTS: Experimentally measured SAR changed considerably once tissue temperatures exceeded 100 °C, contrary to simulation results. The ablation zone diameters were 1.28 cm and 1.30 ± 0.03 cm (transverse), and 2.10 cm and 2.66 ± -0.22 cm (axial), for simulation and experiment, respectively. The average difference in temperature between the simulation and experiment were 5.6 °C (ST) and 6.2 °C (LT). Dice coefficients for 1000 W/kg SAR iso-contour were 0.74 ± 0.01 (ST) and 0.77 (± 0.03) (LT), suggesting good agreement of SAR contours. CONCLUSION: We experimentally demonstrated changes in SAR during MWA ablation, which were not present in simulation, suggesting inaccuracies in dielectric properties. The measured SAR may be used in simplified computer simulations to predict tissue temperature when the antenna geometry is unknown.


Asunto(s)
Técnicas de Ablación , Microondas , Modelos Biológicos , Animales , Simulación por Computador , Hígado/cirugía , Porcinos , Temperatura
16.
Int J Hyperthermia ; 31(7): 726-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26368277

RESUMEN

PURPOSE: Currently available microwave hyperthermia systems for breast cancer treatment do not conform to the intact breast and provide limited control of heating patterns, thereby hindering an effective treatment. A compact patch antenna with a flared groundplane that may be integrated within a wearable hyperthermia system for the treatment of the intact breast disease is proposed. MATERIALS AND METHODS: A 3D simulation-based approach was employed to optimise the antenna design with the objective of maximising the hyperthermia treatment volume (41 °C iso-therm) while maintaining good impedance matching. The optimised antenna design was fabricated and experimentally evaluated with ex vivo tissue measurements. RESULTS: The optimised compact antenna yielded a -10 dB bandwidth of 90 MHz centred at 915 MHz, and was capable of creating hyperthermia treatment volumes up to 14.4 cm(3) (31 mm × 28 mm × 32 mm) with an input power of 15 W. Experimentally measured reflection coefficient and transient temperature profiles were in good agreement with simulated profiles. Variations of + 50% in blood perfusion yielded variations in the treatment volume up to 11.5%. When compared to an antenna with a similar patch element employing a conventional rectangular groundplane, the antenna with flared groundplane afforded 22.3% reduction in required power levels to reach the same temperature, and yielded 2.4 times larger treatment volumes. CONCLUSION: The proposed patch antenna with a flared groundplane may be integrated within a wearable applicator for hyperthermia treatment of intact breast targets and has the potential to improve efficiency, increase patient comfort, and ultimately clinical outcomes.


Asunto(s)
Neoplasias de la Mama/terapia , Hipertermia Inducida/instrumentación , Femenino , Humanos , Fantasmas de Imagen
17.
Int J Hyperthermia ; 30(4): 228-44, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25017322

RESUMEN

PURPOSE: Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS: 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS: Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS: Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.


Asunto(s)
Hipertermia Inducida/métodos , Neoplasias de la Columna Vertebral/terapia , Terapia por Ultrasonido/métodos , Acústica , Análisis de Elementos Finitos , Humanos , Modelos Teóricos
18.
IEEE Trans Biomed Eng ; 71(4): 1269-1280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37943642

RESUMEN

OBJECTIVES: To assess the feasibility of monitoring transient evolution of thermal ablation zones with a microwave transmission coefficient-based technique. METHODS: Microwave ablation was performed in ex vivo bovine liver with two 2.45 GHz directional antennas. A custom apparatus was developed to enable periodic switching between "heating mode" when power from the generator was coupled to the antennas, and "monitoring mode", when antennas were coupled to a network analyzer for broadband transmission coefficient ( s21) measurements. Experiments were performed with applied powers ranging between 30-50 W per antenna for 53-1219 s. Transient s21 spectra over the course of ablations were analyzed to determine feasibility of predicting extent of ablation zones and compared against ground truth assessment from images of sectioned tissue. A linear regression-based mapping between the two datasets was derived to predict ablation extent. RESULTS: Normalized average transmission coefficient initially rapidly decreased and then increased before asymptotically approaching steady state, with the transition time ranging between 53 s (45 W) and 109 s (30 W). Analysis of ground truth ablation zone images indicated time to complete ablation of 230-350 s. The relative prediction error for time to complete ablation derived from the s21 data was in the range of 1.6%-2.3% compared to ground truth. CONCLUSION: We have demonstrated the feasibility of monitoring transient evolution of thermal ablation zones using microwave transmission coefficient measurements in ex vivo tissue. SIGNIFICANCE: The presented technique has potential to contribute towards addressing the clinical need for a method of monitoring evolution of thermal ablation zones.


Asunto(s)
Técnicas de Ablación , Ablación por Catéter , Ablación por Radiofrecuencia , Animales , Bovinos , Hígado/cirugía , Microondas/uso terapéutico , Diseño de Equipo , Ablación por Catéter/métodos
19.
bioRxiv ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38617290

RESUMEN

Background and Purpose: Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue mimicking gel phantom and ex vivo bovine liver, and to report on measurements of the temperature dependent dielectric and thermal properties of the phantom. Methods: Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20 - 90 °C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating were used to develop a calibration between color changes and temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min ( n = 3 samples in each medium for each power/time combination). Broadband (500 MHz - 6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range 22 - 100 °C. Measured dielectric and thermal properties of the phantom were employed in a previously validated computational model of microwave ablation to comparatively assess model predicted extents of heating against experimental observations in the phantom. Results: Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57 °C. Short and long axes of the ablation zone in the phantom (as assessed by the 57 °C isotherm) for 65 W, 5 min ablations were aligned with extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in short axis and 7.4 % smaller in long axis than those observed in ex vivo liver. Measurements of the temperature dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue. After incorporating measured dielectric and thermal properties of the phantom, model predictions of ablation zone linear dimensions ranged between 16 - 50% larger than those observed experimentally. Conclusion: Thermochromic tissue mimicking phantoms provide a suitable, controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings, though ablation zone size and shapes may not accurately represent ablation sizes and shapes observed in ex vivo liver tissue under similar conditions.

20.
Endocr Rev ; 45(1): 125-170, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37556722

RESUMEN

Primary aldosteronism (PA) is the most common cause of secondary hypertension and is associated with increased morbidity and mortality when compared with blood pressure-matched cases of primary hypertension. Current limitations in patient care stem from delayed recognition of the condition, limited access to key diagnostic procedures, and lack of a definitive therapy option for nonsurgical candidates. However, several recent advances have the potential to address these barriers to optimal care. From a diagnostic perspective, machine-learning algorithms have shown promise in the prediction of PA subtypes, while the development of noninvasive alternatives to adrenal vein sampling (including molecular positron emission tomography imaging) has made accurate localization of functioning adrenal nodules possible. In parallel, more selective approaches to targeting the causative aldosterone-producing adrenal adenoma/nodule (APA/APN) have emerged with the advent of partial adrenalectomy or precision ablation. Additionally, the development of novel pharmacological agents may help to mitigate off-target effects of aldosterone and improve clinical efficacy and outcomes. Here, we consider how each of these innovations might change our approach to the patient with PA, to allow more tailored investigation and treatment plans, with corresponding improvement in clinical outcomes and resource utilization, for this highly prevalent disorder.


Asunto(s)
Adenoma Corticosuprarrenal , Hiperaldosteronismo , Hipertensión , Humanos , Aldosterona , Hiperaldosteronismo/complicaciones , Hiperaldosteronismo/terapia , Adenoma Corticosuprarrenal/diagnóstico , Adrenalectomía/efectos adversos , Hipertensión/tratamiento farmacológico , Hipertensión/etiología , Glándulas Suprarrenales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA