Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 123(24): 5164-5170, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31136176

RESUMEN

We have performed an experimental investigation into the interaction of vacuum-ultraviolet synchrotron radiation with pyridine molecules in the gas phase. Specifically, a double-ion chamber spectrometer was used to measure the absolute photoabsorption cross sections and the photoionization quantum yields from the ionization threshold to 21.5 eV. Moreover, photoionization and neutral-decay cross sections in absolute scale were derived from these data. In addition, the fragmentation pattern was investigated as a function of the photon energy by using a time-of-flight mass spectrometer and the photoelectron-photoion coincidence technique. Thus, the absolute partial ionization cross sections for each ionic fragment were obtained. Comparisons are made with experimental data available in the literature.

2.
J Phys Chem A ; 122(51): 9755-9760, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30520626

RESUMEN

The photofragmentation dynamics of 1,1,1,2-tetrafluoroethane (R134a) with photon energies from 12 eV up to 320 eV, surrounding the C 1s edge is discussed. The ionic moieties were measured in coincidence with the ejected electrons (PEPICO mode), and detected as a function of the photon energy. Around the C K core edge, the fragmentation profiles are examined regarding the site specific excitation of the CH2FCF3 molecule. In the present case, site-selectivity is favored by the distinct chemical environments surrounding both C atoms. NEXAFS spectrum at the C 1s edge simulation has been obtained at the TDDFT level and excited state geometry optimization calculations have been performed at the inner-shell multiconfigurational self-consistent field level. Our observations indicate that the C(H2F) 1s excitation to a highly repulsive potential expels a fluorine atom leaving the heavier radical fragment C2F3H2* which relaxes to the fundamental state of the ion C2F3H2+. On the other hand, the excitation from the C(F3) 1s carbon to a repulsive state in the C-C bond, leads to a C-C bond cleavage, explaining the observed site specific fragmentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA