Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(4): 580-594, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36067010

RESUMEN

DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.


Asunto(s)
Epilepsias Parciales , Síndromes Epilépticos , Megalencefalia , Polimicrogiria , Humanos , Mutación , Proteínas Activadoras de GTPasa/genética , Serina-Treonina Quinasas TOR/genética , Epilepsias Parciales/genética , Megalencefalia/genética
2.
Eur J Neurol ; 31(7): e16275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38576261

RESUMEN

BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. METHODS: A panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. RESULTS: A high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with γ-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. CONCLUSIONS: These consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy.


Asunto(s)
Anticonvulsivantes , Enfermedades Mitocondriales , Convulsiones , Humanos , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/terapia , Convulsiones/terapia , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Consenso , Epilepsia/terapia , Epilepsia/tratamiento farmacológico , Técnica Delphi
3.
Eur J Pediatr ; 183(6): 2605-2614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488877

RESUMEN

To evaluate EEG monitoring during neonatal ECMO and to identify any correlations between seizure detection to abnormal neuroimaging. Eight-year, service evaluation of neonates who received at least one continuous EEG (cEEG) whilst on ECMO at Great Ormond Street Hospital. Pearson's chi-square test and multivariate logistic regression analysis were used to assess clinical and EEG variables association with seizures and neuroimaging findings. Fifty-seven neonates were studied; 57 cEEG recordings were reviewed. The incidence of seizures was 33% (19/57); of these 74% (14/19) were electrographic-only. The incidence of status epilepticus was 42%, (8/19 with 6 neonates having electrographic-only status and 2 electro-clinical status. Seizures were detected within an hour of recording in 84%, (16/19). The overall mortality rate was 39% (22/57). Seizure detection was strongly associated with female gender (OR 4.8, 95% CI: 1.1-20.4, p = 0.03), abnormal EEG background activity (OR 2.8, 95% CI: 1.1-7.4, p = 0.03) and abnormal EEG focal features (OR 23.6, 95% CI: 5.4-103.9, p = 0.001). There was a strong association between the presence of seizures and abnormal neuroimaging findings (OR 10.9, 95% CI: 2.8-41.9, p = 0.001). Neonates were highly likely to have abnormal neuroimaging findings in the presence of severely abnormal background EEG (OR 9.5, 95% CI 1.7-52.02, p = 0.01) and focal EEG abnormalities (OR 6.35, 95% CI 1.97-20.5, p = 0.002)Conclusion: The study highlights the importance of cEEG in neonates undergoing ECMO. An association between seizure detection and abnormal neuroimaging findings was described. What is Known: • Patients on ECMO are at a higher risk of seiures. • Continuous EEG monitoring is recommended by the ACNS for high risk and ECMO patients. What is New: • In this cohort, neonates with sezirues were 11 times more likely of having abnromal neuroimaging findings. • Neonates with burst suppressed or suppressed EEG background were 9.5 times more likely to have abnormal neuroimaging findings. What does this study add? • This study reports a 33% incidence of neonatal seizures during ECMO. • Neonates with seizures were 11 times more likely to have an abnormal brain scan. • The study captures the real-time approach of EEG monitoring. • Recommended cEEG monitoring should last at least 24 h for ECMO patients. • This is the first study to assess this in neonates only.


Asunto(s)
Electroencefalografía , Oxigenación por Membrana Extracorpórea , Convulsiones , Humanos , Masculino , Recién Nacido , Femenino , Electroencefalografía/métodos , Convulsiones/etiología , Convulsiones/diagnóstico , Estudios Retrospectivos , Incidencia , Estado Epiléptico/etiología , Estado Epiléptico/diagnóstico , Neuroimagen/métodos , Modelos Logísticos
4.
BMC Pediatr ; 24(1): 460, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026197

RESUMEN

BACKGROUND: Mild hypoxic ischemic encephalopathy is associated with sub optimal cognition and learning difficulties at school age. Although whole-body hypothermia reduces death and disability after moderate or severe encephalopathy in high-income countries, the safety and efficacy of hypothermia in mild encephalopathy is not known. The cooling in mild encephalopathy (COMET) trial will examine if whole-body hypothermia improves cognitive development of neonates with mild encephalopathy. METHODS: The COMET trial is a phase III multicentre open label two-arm randomised controlled trial with masked outcome assessments. A total of 426 neonates with mild encephalopathy will be recruited from 50 to 60 NHS hospitals over 2 ½ years following parental consent. The neonates will be randomised to 72 h of whole-body hypothermia (33.5 ± 0.5 C) or normothermia (37.0 ± 0.5 C) within six hours or age. Prior to the recruitment front line clinical staff will be trained and certified on expanded modified Sarnat staging for encephalopathy. The neurological assessment of all screened and recruited cases will be video recorded and centrally assessed for quality assurance. If recruitment occurs at a non-cooling centre, neonates in both arms will be transferred to a cooling centre for continued care, after randomisation. All neonates will have continuous amplitude integrated electroencephalography (aEEG) at least for the first 48 h to monitor for seizures. Predefined safety outcomes will be documented, and data collected to assess resource utilization of health care. A central team masked to trial group allocation will assess neurodevelopmental outcomes at 2 years of age. The primary outcome is mean difference in composite cognitive scores on Bayley scales of Infant and Toddler development 4th Edition. DISCUSSION: The COMET trial will establish the safety and efficacy of whole-body hypothermia for mild hypoxic ischaemic encephalopathy and inform national and international guidelines in high income countries. It will also provide an economic assessment of whole-body hypothermia therapy for mild encephalopathy in the NHS on cost-effectiveness grounds. TRIAL REGISTRATION NUMBER: NCT05889507 June 5, 2023.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Humanos , Hipotermia Inducida/métodos , Recién Nacido , Hipoxia-Isquemia Encefálica/terapia , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Epilepsia ; 64(3): 602-618, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36762397

RESUMEN

This article provides recommendations on the minimum standards for recording routine ("standard") and sleep electroencephalography (EEG). The joint working group of the International Federation of Clinical Neurophysiology (IFCN) and the International League Against Epilepsy (ILAE) developed the standards according to the methodology suggested for epilepsy-related clinical practice guidelines by the Epilepsy Guidelines Working Group. We reviewed the published evidence using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The quality of evidence for sleep induction methods was assessed by the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) method. A tool for Quality Assessment of Diagnostic Studies (QUADAS-2) was used to assess the risk of bias in technical and methodological studies. Where high-quality published evidence was lacking, we used modified Delphi technique to reach expert consensus. The GRADE system was used to formulate the recommendations. The quality of evidence was low or moderate. We formulated 16 consensus-based recommendations for minimum standards for recording routine and sleep EEG. The recommendations comprise the following aspects: indications, technical standards, recording duration, sleep induction, and provocative methods.


Asunto(s)
Epilepsia , Neurofisiología , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Sueño
6.
Epilepsia ; 64(10): 2550-2570, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37655702

RESUMEN

Seizures are common in neonates, but there is substantial management variability. The Neonatal Task Force of the International League Against Epilepsy (ILAE) developed evidence-based recommendations about antiseizure medication (ASM) management in neonates in accordance with ILAE standards. Six priority questions were formulated, a systematic literature review and meta-analysis were performed, and results were reported following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 standards. Bias was evaluated using the Cochrane tool and risk of Bias in non-randomised studies - of interventions (ROBINS-I), and quality of evidence was evaluated using grading of recommendations, assessment, development and evaluation (GRADE). If insufficient evidence was available, then expert opinion was sought using Delphi consensus methodology. The strength of recommendations was defined according to the ILAE Clinical Practice Guidelines development tool. There were six main recommendations. First, phenobarbital should be the first-line ASM (evidence-based recommendation) regardless of etiology (expert agreement), unless channelopathy is likely the cause for seizures (e.g., due to family history), in which case phenytoin or carbamazepine should be used. Second, among neonates with seizures not responding to first-line ASM, phenytoin, levetiracetam, midazolam, or lidocaine may be used as a second-line ASM (expert agreement). In neonates with cardiac disorders, levetiracetam may be the preferred second-line ASM (expert agreement). Third, following cessation of acute provoked seizures without evidence for neonatal-onset epilepsy, ASMs should be discontinued before discharge home, regardless of magnetic resonance imaging or electroencephalographic findings (expert agreement). Fourth, therapeutic hypothermia may reduce seizure burden in neonates with hypoxic-ischemic encephalopathy (evidence-based recommendation). Fifth, treating neonatal seizures (including electrographic-only seizures) to achieve a lower seizure burden may be associated with improved outcome (expert agreement). Sixth, a trial of pyridoxine may be attempted in neonates presenting with clinical features of vitamin B6-dependent epilepsy and seizures unresponsive to second-line ASM (expert agreement). Additional considerations include a standardized pathway for the management of neonatal seizures in each neonatal unit and informing parents/guardians about the diagnosis of seizures and initial treatment options.


Asunto(s)
Anticonvulsivantes , Epilepsia , Recién Nacido , Humanos , Anticonvulsivantes/uso terapéutico , Levetiracetam/uso terapéutico , Fenitoína/uso terapéutico , Consenso , Epilepsia/tratamiento farmacológico , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico
7.
Pediatr Res ; 94(1): 64-73, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476747

RESUMEN

The blooming of neonatal neurocritical care over the last decade reflects substantial advances in neuromonitoring and neuroprotection. The most commonly used brain monitoring tools in the neonatal intensive care unit (NICU) are amplitude integrated EEG (aEEG), full multichannel continuous EEG (cEEG), and near-infrared spectroscopy (NIRS). While some published guidelines address individual tools, there is no consensus on consistent, efficient, and beneficial use of these modalities in common NICU scenarios. This work reviews current evidence to assist decision making for best utilization of neuromonitoring modalities in neonates with encephalopathy or with possible seizures. Neuromonitoring approaches in extremely premature and critically ill neonates are discussed separately in the companion paper. IMPACT: Neuromonitoring techniques hold promise for improving neonatal care. For neonatal encephalopathy, aEEG can assist in screening for eligibility for therapeutic hypothermia, though should not be used to exclude otherwise eligible neonates. Continuous cEEG, aEEG and NIRS through rewarming can assist in prognostication. For neonates with possible seizures, cEEG is the gold standard for detection and diagnosis. If not available, aEEG as a screening tool is superior to clinical assessment alone. The use of seizure detection algorithms can help with timely seizures detection at the bedside.


Asunto(s)
Encefalopatías , Enfermedades del Recién Nacido , Recién Nacido , Humanos , Convulsiones/terapia , Convulsiones/tratamiento farmacológico , Encefalopatías/diagnóstico , Encefalopatías/terapia , Electroencefalografía/métodos , Unidades de Cuidado Intensivo Neonatal , Cuidados Críticos , Enfermedades del Recién Nacido/diagnóstico , Enfermedades del Recién Nacido/terapia
8.
Pediatr Res ; 94(1): 55-63, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36434203

RESUMEN

Neonatal intensive care has expanded from cardiorespiratory care to a holistic approach emphasizing brain health. To best understand and monitor brain function and physiology in the neonatal intensive care unit (NICU), the most commonly used tools are amplitude-integrated EEG, full multichannel continuous EEG, and near-infrared spectroscopy. Each of these modalities has unique characteristics and functions. While some of these tools have been the subject of expert consensus statements or guidelines, there is no overarching agreement on the optimal approach to neuromonitoring in the NICU. This work reviews current evidence to assist decision making for the best utilization of these neuromonitoring tools to promote neuroprotective care in extremely premature infants and in critically ill neonates. Neuromonitoring approaches in neonatal encephalopathy and neonates with possible seizures are discussed separately in the companion paper. IMPACT: For extremely premature infants, NIRS monitoring has a potential role in individualized brain-oriented care, and selective use of aEEG and cEEG can assist in seizure detection and prognostication. For critically ill neonates, NIRS can monitor cerebral perfusion, oxygen delivery, and extraction associated with disease processes as well as respiratory and hypodynamic management. Selective use of aEEG and cEEG is important in those with a high risk of seizures and brain injury. Continuous multimodal monitoring as well as monitoring of sleep, sleep-wake cycling, and autonomic nervous system have a promising role in neonatal neurocritical care.


Asunto(s)
Lesiones Encefálicas , Recien Nacido Extremadamente Prematuro , Recién Nacido , Lactante , Humanos , Enfermedad Crítica , Electroencefalografía/métodos , Convulsiones/diagnóstico , Convulsiones/terapia , Cuidado Intensivo Neonatal/métodos , Lesiones Encefálicas/diagnóstico
9.
Dev Med Child Neurol ; 65(5): 701-711, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36069073

RESUMEN

AIM: To investigate the link between sleep disruption and cognitive impairment in childhood epilepsy by studying the effect of epilepsy on sleep homeostasis, as reflected in slow-wave activity (SWA). METHOD: We examined SWA from overnight EEG-polysomnography in 19 children with focal epilepsy (mean [SD] age 11 years 6 months [3 years], range 6 years 6 months-15 years 6 months; 6 females, 13 males) and 18 age- and sex-matched typically developing controls, correlating this with contemporaneous memory consolidation task scores, full-scale IQ, seizures, and focal interictal discharges. RESULTS: Children with epilepsy did not differ significantly from controls in overnight SWA decline (p = 0.12) or gain in memory performance with sleep (p = 0.27). SWA was lower in patients compared to controls in the first hour of non-rapid eye movement sleep (p = 0.021), although not in those who remained seizure-free (p = 0.26). Full-scale IQ did not correlate with measures of SWA in patients or controls. There was no significant difference in SWA measures between focal and non-focal electrodes. INTERPRETATION: Overnight SWA decline is conserved in children with focal epilepsy and may underpin the preservation of sleep-related memory consolidation in this patient group. Reduced early-night SWA may reflect impaired or immature sleep homeostasis in those with a higher seizure burden. WHAT THIS PAPER ADDS: The decline in slow-wave activity (SWA) across the night, reflecting global synaptic downscaling, was preserved in children with focal lesional epilepsies. Sleep benefited memory consolidation in this group of patients, as in typically developing children. Reduced early-night SWA was associated with increased likelihood of a subsequent seizure.


Asunto(s)
Epilepsias Parciales , Epilepsia , Masculino , Femenino , Humanos , Niño , Lactante , Electroencefalografía , Epilepsias Parciales/complicaciones , Epilepsias Parciales/psicología , Convulsiones/complicaciones , Sueño , Epilepsia/complicaciones , Cognición , Homeostasis
10.
Dev Med Child Neurol ; 65(10): 1395-1407, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36917624

RESUMEN

AIM: To examine the impact of parent-led massage on the sleep electroencephalogram (EEG) features of typically developing term-born infants at 4 months. METHOD: Infants recruited at birth were randomized to intervention (routine parent-led massage) and control groups. Infants had a daytime sleep EEG at 4 months and were assessed using the Griffiths Scales of Child Development, Third Edition at 4 and 18 months. Comparative analysis between groups and subgroup analysis between regularly massaged and never-massaged infants were performed. Groups were compared for sleep stage, sleep spindles, quantitative EEG (primary analysis), and Griffiths using the Mann-Whitney U test. RESULTS: In total, 179 out of 182 infants (intervention: 83 out of 84; control: 96 out of 98) had a normal sleep EEG. Median (interquartile range) sleep duration was 49.8 minutes (39.1-71.4) (n = 156). A complete first sleep cycle was seen in 67 out of 83 (81%) and 72 out of 96 (75%) in the intervention and control groups respectively. Groups did not differ in sleep stage durations, latencies to sleep and to rapid eye movement sleep. Sleep spindle spectral power was greater in the intervention group in main and subgroup analyses. The intervention group showed greater EEG magnitudes, and lower interhemispherical coherence on subgroup analyses. Griffiths assessments at 4 months (n = 179) and 18 months (n = 173) showed no group differences in the main and subgroup analyses. INTERPRETATION: Routine massage is associated with distinct functional brain changes at 4 months. WHAT THIS PAPER ADDS: Routine massage of infants is associated with differences in sleep electroencephalogram biomarkers at 4 months. Massaged infants had higher sleep spindle spectral power, greater sleep EEG magnitudes, and lower interhemispherical coherence. No differences between groups were observed in total nap duration or first cycle macrostructure.


Asunto(s)
Electroencefalografía , Sueño , Recién Nacido , Niño , Lactante , Humanos , Encéfalo , Padres , Masaje
11.
Cochrane Database Syst Rev ; 10: CD014967, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37873971

RESUMEN

BACKGROUND: Newborn infants are more prone to seizures than older children and adults. The neuronal injury caused by seizures in neonates often results in long-term neurodevelopmental sequelae. There are several options for anti-seizure medications (ASMs) in neonates. However, the ideal choice of first-, second- and third-line ASM is still unclear. Further, many other aspects of seizure management such as whether ASMs should be initiated for only-electrographic seizures and how long to continue the ASM once seizure control is achieved are elusive. OBJECTIVES: 1. To assess whether any ASM is more or less effective than an alternative ASM (both ASMs used as first-, second- or third-line treatment) in achieving seizure control and improving neurodevelopmental outcomes in neonates with seizures. We analysed EEG-confirmed seizures and clinically-diagnosed seizures separately. 2. To assess maintenance therapy with ASM versus no maintenance therapy after achieving seizure control. We analysed EEG-confirmed seizures and clinically-diagnosed seizures separately. 3. To assess treatment of both clinical and electrographic seizures versus treatment of clinical seizures alone in neonates. SEARCH METHODS: We searched MEDLINE, Embase, CENTRAL, Epistemonikos and three databases in May 2022 and June 2023. These searches were not limited other than by study design to trials. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that included neonates with EEG-confirmed or clinically diagnosed seizures and compared (1) any ASM versus an alternative ASM, (2) maintenance therapy with ASM versus no maintenance therapy, and (3) treatment of clinical or EEG seizures versus treatment of clinical seizures alone. DATA COLLECTION AND ANALYSIS: Two review authors assessed trial eligibility, risk of bias and independently extracted data. We analysed treatment effects in individual trials and reported risk ratio (RR) for dichotomous data, and mean difference (MD) for continuous data, with respective 95% confidence interval (CI). We used GRADE to assess the certainty of evidence. MAIN RESULTS: We included 18 trials (1342 infants) in this review. Phenobarbital versus levetiracetam as first-line ASM in EEG-confirmed neonatal seizures (one trial) Phenobarbital is probably more effective than levetiracetam in achieving seizure control after first loading dose (RR 2.32, 95% CI 1.63 to 3.30; 106 participants; moderate-certainty evidence), and after maximal loading dose (RR 2.83, 95% CI 1.78 to 4.50; 106 participants; moderate-certainty evidence). However, we are uncertain about the effect of phenobarbital when compared to levetiracetam on mortality before discharge (RR 0.30, 95% CI 0.04 to 2.52; 106 participants; very low-certainty evidence), requirement of mechanical ventilation (RR 1.21, 95% CI 0.76 to 1.91; 106 participants; very low-certainty evidence), sedation/drowsiness (RR 1.74, 95% CI 0.68 to 4.44; 106 participants; very low-certainty evidence) and epilepsy post-discharge (RR 0.92, 95% CI 0.48 to 1.76; 106 participants; very low-certainty evidence). The trial did not report on mortality or neurodevelopmental disability at 18 to 24 months. Phenobarbital versus phenytoin as first-line ASM in EEG-confirmed neonatal seizures (one trial) We are uncertain about the effect of phenobarbital versus phenytoin on achieving seizure control after maximal loading dose of ASM (RR 0.97, 95% CI 0.54 to 1.72; 59 participants; very low-certainty evidence). The trial did not report on mortality or neurodevelopmental disability at 18 to 24 months. Maintenance therapy with ASM versus no maintenance therapy in clinically diagnosed neonatal seizures (two trials) We are uncertain about the effect of short-term maintenance therapy with ASM versus no maintenance therapy during the hospital stay (but discontinued before discharge) on the risk of repeat seizures before hospital discharge (RR 0.76, 95% CI 0.56 to 1.01; 373 participants; very low-certainty evidence). Maintenance therapy with ASM compared to no maintenance therapy may have little or no effect on mortality before discharge (RR 0.69, 95% CI 0.39 to 1.22; 373 participants; low-certainty evidence), mortality at 18 to 24 months (RR 0.94, 95% CI 0.34 to 2.61; 111 participants; low-certainty evidence), neurodevelopmental disability at 18 to 24 months (RR 0.89, 95% CI 0.13 to 6.12; 108 participants; low-certainty evidence) and epilepsy post-discharge (RR 3.18, 95% CI 0.69 to 14.72; 126 participants; low-certainty evidence). Treatment of both clinical and electrographic seizures versus treatment of clinical seizures alone in neonates (two trials) Treatment of both clinical and electrographic seizures when compared to treating clinical seizures alone may have little or no effect on seizure burden during hospitalisation (MD -1871.16, 95% CI -4525.05 to 782.73; 68 participants; low-certainty evidence), mortality before discharge (RR 0.59, 95% CI 0.28 to 1.27; 68 participants; low-certainty evidence) and epilepsy post-discharge (RR 0.75, 95% CI 0.12 to 4.73; 35 participants; low-certainty evidence). The trials did not report on mortality or neurodevelopmental disability at 18 to 24 months. We report data from the most important comparisons here; readers are directed to Results and Summary of Findings tables for all comparisons. AUTHORS' CONCLUSIONS: Phenobarbital as a first-line ASM is probably more effective than levetiracetam in achieving seizure control after the first loading dose and after the maximal loading dose of ASM (moderate-certainty evidence). Phenobarbital + bumetanide may have little or no difference in achieving seizure control when compared to phenobarbital alone (low-certainty evidence). Limited data and very low-certainty evidence preclude us from drawing any reasonable conclusion on the effect of using one ASM versus another on other short- and long-term outcomes. In neonates who achieve seizure control after the first loading dose of phenobarbital, maintenance therapy compared to no maintenance ASM may have little or no effect on all-cause mortality before discharge, mortality by 18 to 24 months, neurodevelopmental disability by 18 to 24 months and epilepsy post-discharge (low-certainty evidence). In neonates with hypoxic-ischaemic encephalopathy, treatment of both clinical and electrographic seizures when compared to treating clinical seizures alone may have little or no effect on seizure burden during hospitalisation, all-cause mortality before discharge and epilepsy post-discharge (low-certainty evidence). All findings of this review apply only to term and late preterm neonates. We need well-designed RCTs for each of the three objectives of this review to improve the precision of the results. These RCTs should use EEG to diagnose seizures and should be adequately powered to assess long-term neurodevelopmental outcomes. We need separate RCTs evaluating the choice of ASM in preterm infants.


Asunto(s)
Epilepsia , Fenitoína , Lactante , Niño , Recién Nacido , Adulto , Humanos , Adolescente , Fenitoína/uso terapéutico , Levetiracetam/uso terapéutico , Epilepsia/tratamiento farmacológico , Fenobarbital/uso terapéutico , Convulsiones/tratamiento farmacológico
12.
Am J Hum Genet ; 104(5): 948-956, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982612

RESUMEN

The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.


Asunto(s)
Canales de Calcio Tipo N/genética , Calcio/metabolismo , Discinesias/genética , Epilepsia/genética , Mutación , Transmisión Sináptica , Adolescente , Niño , Preescolar , Discinesias/patología , Epilepsia/patología , Femenino , Humanos , Lactante , Pérdida de Heterocigocidad , Masculino , Linaje
13.
J Pediatr ; 243: 61-68.e2, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34626667

RESUMEN

OBJECTIVE: To assess the impact of the time to treatment of the first electrographic seizure on subsequent seizure burden and describe overall seizure management in a large neonatal cohort. STUDY DESIGN: Newborns (36-44 weeks of gestation) requiring electroencephalographic (EEG) monitoring recruited to 2 multicenter European studies were included. Infants who received antiseizure medication exclusively after electrographic seizure onset were grouped based on the time to treatment of the first seizure: antiseizure medication within 1 hour, between 1 and 2 hours, and after 2 hours. Outcomes measured were seizure burden, maximum seizure burden, status epilepticus, number of seizures, and antiseizure medication dose over the first 24 hours after seizure onset. RESULTS: Out of 472 newborns recruited, 154 (32.6%) had confirmed electrographic seizures. Sixty-nine infants received antiseizure medication exclusively after the onset of electrographic seizure, including 21 infants within 1 hour of seizure onset, 15 between 1 and 2 hours after seizure onset, and 33 at >2 hours after seizure onset. Significantly lower seizure burden and fewer seizures were noted in the infants treated with antiseizure medication within 1 hour of seizure onset (P = .029 and .035, respectively). Overall, 258 of 472 infants (54.7%) received antiseizure medication during the study period, of whom 40 without electrographic seizures received treatment exclusively during EEG monitoring and 11 with electrographic seizures received no treatment. CONCLUSIONS: Treatment of neonatal seizures may be time-critical, but more research is needed to confirm this. Improvements in neonatal seizure diagnosis and treatment are also needed.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Estado Epiléptico , Electroencefalografía , Humanos , Lactante , Recién Nacido , Monitoreo Fisiológico , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico
14.
Epilepsia ; 63(6): 1349-1397, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35503712

RESUMEN

The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticos , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Lactante , Recién Nacido , Convulsiones/diagnóstico
15.
Epilepsia ; 63(6): 1398-1442, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35503717

RESUMEN

The 2017 International League Against Epilepsy classification has defined a three-tier system with epilepsy syndrome identification at the third level. Although a syndrome cannot be determined in all children with epilepsy, identification of a specific syndrome provides guidance on management and prognosis. In this paper, we describe the childhood onset epilepsy syndromes, most of which have both mandatory seizure type(s) and interictal electroencephalographic (EEG) features. Based on the 2017 Classification of Seizures and Epilepsies, some syndrome names have been updated using terms directly describing the seizure semiology. Epilepsy syndromes beginning in childhood have been divided into three categories: (1) self-limited focal epilepsies, comprising four syndromes: self-limited epilepsy with centrotemporal spikes, self-limited epilepsy with autonomic seizures, childhood occipital visual epilepsy, and photosensitive occipital lobe epilepsy; (2) generalized epilepsies, comprising three syndromes: childhood absence epilepsy, epilepsy with myoclonic absence, and epilepsy with eyelid myoclonia; and (3) developmental and/or epileptic encephalopathies, comprising five syndromes: epilepsy with myoclonic-atonic seizures, Lennox-Gastaut syndrome, developmental and/or epileptic encephalopathy with spike-and-wave activation in sleep, hemiconvulsion-hemiplegia-epilepsy syndrome, and febrile infection-related epilepsy syndrome. We define each, highlighting the mandatory seizure(s), EEG features, phenotypic variations, and findings from key investigations.


Asunto(s)
Epilepsias Mioclónicas , Epilepsias Parciales , Epilepsia Tipo Ausencia , Niño , Electroencefalografía , Humanos , Convulsiones
16.
Epilepsia ; 62(3): 615-628, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33522601

RESUMEN

Seizures are the most common neurological emergency in the neonatal period and in contrast to those in infancy and childhood, are often provoked seizures with an acute cause and may be electrographic-only. Hence, neonatal seizures may not fit easily into classification schemes for seizures and epilepsies primarily developed for older children and adults. A Neonatal Seizures Task Force was established by the International League Against Epilepsy (ILAE) to develop a modification of the 2017 ILAE Classification of Seizures and Epilepsies, relevant to neonates. The neonatal classification framework emphasizes the role of electroencephalography (EEG) in the diagnosis of seizures in the neonate and includes a classification of seizure types relevant to this age group. The seizure type is determined by the predominant clinical feature. Many neonatal seizures are electrographic-only with no evident clinical features; therefore, these are included in the proposed classification. Clinical events without an EEG correlate are not included. Because seizures in the neonatal period have been shown to have a focal onset, a division into focal and generalized is unnecessary. Seizures can have a motor (automatisms, clonic, epileptic spasms, myoclonic, tonic), non-motor (autonomic, behavior arrest), or sequential presentation. The classification allows the user to choose the level of detail when classifying seizures in this age group.


Asunto(s)
Epilepsia Benigna Neonatal/clasificación , Epilepsia/clasificación , Convulsiones/clasificación , Comités Consultivos , Diagnóstico Diferencial , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia Benigna Neonatal/diagnóstico , Humanos , Recién Nacido , Convulsiones/diagnóstico
17.
Epilepsia ; 62(2): 325-334, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33410528

RESUMEN

OBJECTIVE: Asparagine-linked glycosylation 13 (ALG13) deficiencies have been repeatedly described in the literature with the clinical phenotype of a developmental and epileptic encephalopathy (DEE). Most cases were females carrying the recurrent ALG13 de novo variant, p.(Asn107Ser), with normal transferrin electrophoresis. METHODS: We delineate the phenotypic spectrum of 38 individuals, 37 girls and one boy, 16 of them novel and 22 published, with the most common pathogenic ALG13 variant p.(Asn107Ser) and additionally report the phenotype of three individuals carrying other likely pathogenic ALG13 variants. RESULTS: The phenotypic spectrum often comprised pharmacoresistant epilepsy with epileptic spasms, mostly with onset within the first 6 months of life and with spasm persistence in one-half of the cases. Tonic seizures were the most prevalent additional seizure type. Electroencephalography showed hypsarrhythmia and at a later stage of the disease in one-third of all cases paroxysms of fast activity with electrodecrement. ALG13-related DEE was usually associated with severe to profound developmental delay; ambulation was acquired by one-third of the cases, whereas purposeful hand use was sparse or completely absent. Hand stereotypies and dyskinetic movements including dystonia or choreoathetosis were relatively frequent. Verbal communication skills were absent or poor, and eye contact and pursuit were often impaired. SIGNIFICANCE: X-linked ALG13-related DEE usually manifests as West syndrome with severe to profound developmental delay. It is predominantly caused by the recurrent de novo missense variant p.(Asn107Ser). Comprehensive functional studies will be able to prove or disprove an association with congenital disorder of glycosylation.


Asunto(s)
Discapacidades del Desarrollo/fisiopatología , Epilepsia Refractaria/fisiopatología , N-Acetilglucosaminiltransferasas/genética , Espasmos Infantiles/fisiopatología , Hormona Adrenocorticotrópica/uso terapéutico , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Discapacidades del Desarrollo/genética , Dieta Cetogénica , Epilepsia Refractaria/genética , Epilepsia Refractaria/terapia , Discinesias/genética , Discinesias/fisiopatología , Electroencefalografía , Síndromes Epilépticos/genética , Síndromes Epilépticos/fisiopatología , Síndromes Epilépticos/terapia , Femenino , Glucocorticoides/uso terapéutico , Hormonas/uso terapéutico , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/fisiopatología , Imagen por Resonancia Magnética , Masculino , Mutación Missense , Fenotipo , Conducta Social , Espasmos Infantiles/genética
18.
Epilepsia ; 60(9): 1861-1869, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31418851

RESUMEN

OBJECTIVE: To determine the underlying etiologies in a contemporary cohort of infants with infantile spasms and to examine response to treatment. METHODS: Identification of the underlying etiology and response to treatment in 377 infants enrolled in a clinical trial of the treatment of infantile spasms between 2007 and 2014 using a systematic review of history, examination, and investigations. They were classified using the pediatric adaptation of International Classification of Diseases, Tenth Revision (ICD-10). RESULTS: A total of 219 of 377 (58%) had a proven etiology, of whom 128 (58%) responded, 58 of 108 (54%) were allocated hormonal treatment, and 70 of 111 (63%) had combination therapy. Fourteen of 17 (82%, 95% confidence interval [CI] 59% to 94%) infants with stroke and infarct responded (compared to 114 of 202 for the rest of the proven etiology group (56%, 95% CI 48% to 62%, chi-square 4.3, P = .037): the better response remains when treatment allocation and lead time are taken into account (odds ratio 5.1, 95% CI 1.1 to 23.6, P = .037). Twenty of 37 (54%, 95% CI 38% to 70%) infants with Down syndrome had cessation of spasms compared to 108 of 182 (59%, 95% CI 52% to 66%, chi-square 0.35, P = .55) for the rest of the proven etiology group. The lack of a significant difference remains after taking treatment modality and lead-time into account (odds ratio 0.8, 95% CI 0.4 to 1.7, P = .62). In Down syndrome infants, treatment modality did not appear to affect response: 11 of 20 (55%) allocated hormonal therapy responded, compared to 9 of 17 (53%) allocated combination therapy. SIGNIFICANCE: This classification allows easy comparison with other classifications and with our earlier reports. Stroke and infarct have a better outcome than other etiologies, whereas Down syndrome might not respond to the addition of vigabatrin to hormonal treatment.


Asunto(s)
Malformaciones del Desarrollo Cortical/complicaciones , Espasmos Infantiles/etiología , Accidente Cerebrovascular/complicaciones , Anticonvulsivantes/uso terapéutico , Femenino , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/fisiopatología , Prednisolona/uso terapéutico , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/fisiopatología , Accidente Cerebrovascular/fisiopatología , Vigabatrin/uso terapéutico
19.
Pediatr Res ; 85(7): 943-954, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30584262

RESUMEN

Although seizures have a higher incidence in neonates than any other age group and are associated with significant mortality and neurodevelopmental disability, treatment is largely guided by physician preference and tradition, due to a lack of data from well-designed clinical trials. There is increasing interest in conducting trials of novel drugs to treat neonatal seizures, but the unique characteristics of this disorder and patient population require special consideration with regard to trial design. The Critical Path Institute formed a global working group of experts and key stakeholders from academia, the pharmaceutical industry, regulatory agencies, neonatal nurse associations, and patient advocacy groups to develop consensus recommendations for design of clinical trials to treat neonatal seizures. The broad expertise and perspectives of this group were invaluable in developing recommendations addressing: (1) use of neonate-specific adaptive trial designs, (2) inclusion/exclusion criteria, (3) stratification and randomization, (4) statistical analysis, (5) safety monitoring, and (6) definitions of important outcomes. The guidelines are based on available literature and expert consensus, pharmacokinetic analyses, ethical considerations, and parental concerns. These recommendations will ultimately facilitate development of a Master Protocol and design of efficient and successful drug trials to improve the treatment and outcome for this highly vulnerable population.


Asunto(s)
Enfermedades del Recién Nacido/tratamiento farmacológico , Proyectos de Investigación , Convulsiones/tratamiento farmacológico , Humanos , Recién Nacido
20.
Neuropediatrics ; 50(5): 280-293, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31340400

RESUMEN

Neonatal seizures are the most prevalent and distinctive sign of neurologic dysfunction in early life and pose an immense challenge for clinicians. Improvements in neonatal care have increased the survival rate of extremely premature infants, considerably changing the spectrum of underlying etiologies, and instigating a gradual shift from mortality to morbidity. Recognizing neonatal seizures can be challenging due to variability in presentation but clinical features can often provide valuable clues about etiology. Yet, the majority of neonatal seizures are subclinical. Even though conventional electroencephalography (EEG) with simultaneous video detection of seizures still represents the diagnostic gold standard, continuous monitoring using a one- to two-channel amplitude-integrated EEG with concurrent unprocessed EEG can be crucial for early recognition and intervention. Furthermore, tremendous progress has been made in neuroimaging, and all infants with seizures should have a magnetic resonance imaging (MRI) to help identify the underlying etiology. While the majority of neonatal seizures are caused by hypoxic-ischemic events, stroke, hemorrhage, or infection, approximately 15% of patients will require more sophisticated algorithms for diagnostic workup, including metabolic and genetic screening. These recent developments have led to renew interest in the classification of neonatal seizures, which aim to help identify etiology and guide appropriate therapeutic and prognostic decisions. In this review, we outline recent progress made in the etiology, diagnosis, and treatment of neonatal seizures and highlight areas that deserve further research.


Asunto(s)
Convulsiones , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Electroencefalografía , Humanos , Recién Nacido , Recien Nacido Prematuro/fisiología , Neuroimagen , Convulsiones/diagnóstico , Convulsiones/etiología , Convulsiones/terapia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA