Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 152, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183477

RESUMEN

Trichothecenes are a structurally diverse family of toxic secondary metabolites produced by certain species of multiple fungal genera. All trichothecene analogs share a core 12,13-epoxytrichothec-9-ene (EPT) structure but differ in presence, absence and types of substituents attached to various positions of EPT. Formation of some of the structural diversity begins early in the biosynthetic pathway such that some producing species have few trichothecene biosynthetic intermediates in common. Cytochrome P450 monooxygenases (P450s) play critical roles in formation of trichothecene structural diversity. Within some species, relaxed substrate specificities of P450s allow individual orthologs of the enzymes to modify multiple trichothecene biosynthetic intermediates. It is not clear, however, whether the relaxed specificity extends to biosynthetic intermediates that are not produced by the species in which the orthologs originate. To address this knowledge gap, we used a mutant complementation-heterologous expression analysis to assess whether orthologs of three trichothecene biosynthetic P450s (TRI11, TRI13 and TRI22) from Fusarium sporotrichioides, Trichoderma arundinaceum, and Paramyrothecium roridum can modify trichothecene biosynthetic intermediates that they do not encounter in the organism in which they originated. The results indicate that TRI13 and TRI22 could not modify the intermediates that they do not normally encounter, whereas TRI11 could modify an intermediate that it does not normally encounter. These findings indicate that substrate promiscuity varies among trichothecene biosynthetic P450s. One structural feature that likely impacts the ability of the P450s to use biosynthetic intermediates as substrates is the presence and absence of an oxygen atom attached to carbon atom 3 of EPT.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Tricotecenos , Especificidad por Sustrato , Sistema Enzimático del Citocromo P-450/genética , Metabolismo Secundario
2.
Fungal Genet Biol ; 160: 103696, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35470043

RESUMEN

The genus Fusarium includes pathogens of global concern to animal and plant health. Natural products (NPs) synthesized by Fusarium can contribute to pathogenesis or competitiveness of the fungus in the environment and to animal diseases, including cancer and neural tube defects. Polyketide synthases (PKSs) are a family of large, multi-domain enzymes that are required for synthesis of most fungal NPs. To gain insight into the NP potential of Fusarium, we retrieved 2974 PKS gene sequences from the genomes of 206 Fusarium species. Phylogenetic analysis resolved these PKSs, along with 118 previously described PKSs from other fungi, into 123 clades. Based on results from previous studies, we propose that PKSs in the same clade generally synthesize the same polyketide, which is structurally distinct from polyketides synthesized by PKSs in other clades. We predict that the 123 clades potentially produce 113 structurally distinct families of polyketide-derived NPs because some NPs (e.g., zearalenone) require two PKSs for their synthesis. Collectively, the clades include PKSs required for synthesis of six NPs whose production has not previously been reported in Fusarium, including two NPs with significant pharmaceutical interest: chaetoviridin and a statin. Our results highlight the NP diversity of Fusarium and the potential of the genus to produce metabolites with medical and other applications.


Asunto(s)
Productos Biológicos , Fusarium , Policétidos , Animales , Productos Biológicos/metabolismo , Filogenia , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo
3.
Appl Microbiol Biotechnol ; 106(21): 7153-7171, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36166052

RESUMEN

The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s). KEY POINTS: • Two polyketide synthase genes are required for aspinolide biosynthesis. • Blocking aspinolide production increases production of the terpenoid harzianum A. • Aspinolides and harzianum A act redundantly in antibiosis of T. arundinaceum.


Asunto(s)
Policétidos , Sesquiterpenos , Trichoderma , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Regulación Fúngica de la Expresión Génica , Antifúngicos/metabolismo , Trichoderma/metabolismo , Terpenos/metabolismo , Sesquiterpenos/metabolismo , Lactonas/metabolismo , Policétidos/metabolismo
4.
Plant Dis ; 106(6): 1597-1609, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34907805

RESUMEN

Accurate species-level identification of an etiological agent is crucial for disease diagnosis and management because knowing the agent's identity connects it with what is known about its host range, geographic distribution, and toxin production potential. This is particularly true in publishing peer-reviewed disease reports, where imprecise and/or incorrect identifications weaken the public knowledge base. This can be a daunting task for phytopathologists and other applied biologists that need to identify Fusarium in particular, because published and ongoing multilocus molecular systematic studies have highlighted several confounding issues. Paramount among these are: (i) this agriculturally and clinically important genus is currently estimated to comprise more than 400 phylogenetically distinct species (i.e., phylospecies), with more than 80% of these discovered within the past 25 years; (ii) approximately one-third of the phylospecies have not been formally described; (iii) morphology alone is inadequate to distinguish most of these species from one another; and (iv) the current rapid discovery of novel fusaria from pathogen surveys and accompanying impact on the taxonomic landscape is expected to continue well into the foreseeable future. To address the critical need for accurate pathogen identification, our research groups are focused on populating two web-accessible databases (FUSARIUM-ID v.3.0 and the nonredundant National Center for Biotechnology Information nucleotide collection that includes GenBank) with portions of three phylogenetically informative genes (i.e., TEF1, RPB1, and RPB2) that resolve at or near the species level in every Fusarium species. The objectives of this Special Report, and its companion in this issue (Torres-Cruz et al. 2022), are to provide a progress report on our efforts to populate these databases and to outline a set of best practices for DNA sequence-based identification of fusaria.


Asunto(s)
Fusarium , Secuencia de Bases , Fusarium/genética , Filogenia
5.
Plant Dis ; 106(6): 1610-1616, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34879732

RESUMEN

Species within Fusarium are of global agricultural, medical, and food/feed safety concern and have been extensively characterized. However, accurate identification of species is challenging and usually requires DNA sequence data. FUSARIUM-ID (http://isolate.fusariumdb.org/blast.php) is a publicly available database designed to support the identification of Fusarium species using sequences of multiple phylogenetically informative loci, especially the highly informative ∼680-bp 5' portion of the translation elongation factor 1-alpha (TEF1) gene that has been adopted as the primary barcoding locus in the genus. However, FUSARIUM-ID v.1.0 and 2.0 had several limitations, including inconsistent metadata annotation for the archived sequences and poor representation of some species complexes and marker loci. Here, we present FUSARIUM-ID v.3.0, which provides the following improvements: (i) additional and updated annotation of metadata for isolates associated with each sequence, (ii) expanded taxon representation in the TEF1 sequence database, (iii) availability of the sequence database as a downloadable file to enable local BLAST queries, and (iv) a tutorial file for users to perform local BLAST searches using either freely available software, such as SequenceServer, BLAST+ executable in the command line, and Galaxy, or the proprietary Geneious software. FUSARIUM-ID will be updated on a regular basis by archiving sequences of TEF1 and other loci from newly identified species and greater in-depth sampling of currently recognized species.


Asunto(s)
Fusarium , ADN de Hongos/genética , Fusarium/genética , Filogenia
7.
BMC Genomics ; 21(1): 510, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703172

RESUMEN

BACKGROUND: Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. RESULTS: Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. CONCLUSION: Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.


Asunto(s)
Fumonisinas , Fusarium , Hongos , Fusarium/genética , Familia de Multigenes , Esfingolípidos
8.
Fungal Genet Biol ; 136: 103317, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31841670

RESUMEN

Trichothecenes are among the mycotoxins of most concern to food and feed safety and are produced by species in two lineages of Fusarium: the F. incarnatum-equiseti (FIESC) and F. sambucinum (FSAMSC) species complexes. Previous functional analyses of the trichothecene biosynthetic gene (TRI) cluster in members of FSAMSC indicate that the transcription factor gene TRI6 activates expression of other TRI cluster genes. In addition, previous sequence analyses indicate that the FIESC TRI cluster includes TRI6 and another uncharacterized transcription factor gene (hereafter TRI21) that was not reported in FSAMSC. Here, gene deletion analysisindicated that in FIESC TRI6 functions in a manner similar to FSAMSC, whereas TRI21 activated expression of some genes that function late in the trichothecene biosynthetic pathway but not early-pathway genes. Consistent with this finding, TRI21 was required for formation of diacetoxyscripenol, a late-trichothecene-pathway product, but not for isotrichodermin, an early-pathway product. Although intact homologs of TRI21 were not detected in FSAMSC or other trichothecene-producing fungal genera, TRI21 fragments were detected in some FSAMSC species. This suggests that the gene was acquired by Fusarium after divergence from other trichothecene-producing fungi, was subsequently lost in FSAMSC, but was retained in FIESC. Together, our results indicate fundamental differences in regulation of trichothecene biosynthesis in FIESC and FSAMSC.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/metabolismo , Factores de Transcripción/genética , Tricotecenos/metabolismo , Vías Biosintéticas/genética , ADN de Hongos , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Prueba de Complementación Genética , Familia de Multigenes , Filogenia , Eliminación de Secuencia
9.
Fungal Genet Biol ; 144: 103466, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32956810

RESUMEN

Pseudoflower formation is arguably the rarest outcome of a plant-fungus interaction. Here we report on a novel putative floral mimicry system in which the pseudoflowers are composed entirely of fungal tissues in contrast to modified leaves documented in previous mimicry systems. Pseudoflowers on two perennial Xyris species (yellow-eyed grass, X. setigera and X. surinamensis) collected from savannas in Guyana were produced by Fusarium xyrophilum, a novel Fusarium species. These pseudoflowers mimic Xyris flowers in gross morphology and are ultraviolet reflective. Axenic cultures of F. xyrophilum produced two pigments that had fluorescence emission maxima in light ranges that trichromatic insects are sensitive to and volatiles known to attract insect pollinators. One of the volatiles emitted by F. xyrophilum cultures (i.e., 2-ethylhexanol) was also detected in the head space of X. laxifolia var. iridifolia flowers, a perennial species native to the New World. Results of microscopic and PCR analyses, combined with examination of gross morphology of the pseudoflowers, provide evidence that the fungus had established a systemic infection in both Xyris species, sterilized them and formed fungal pseudoflowers containing both mating type idiomorphs. Fusarium xyrophilum cultures also produced the auxin indole-3-acetic acid (IAA) and the cytokinin isopentenyl adenosine (iPR). Field observations revealed that pseudoflowers and Xyris flowers were both visited by bees. Together, the results suggest that F. xyrophilum pseudoflowers are a novel floral mimicry system that attracts insect pollinators, via visual and olfactory cues, into vectoring its conidia, which might facilitate outcrossing of this putatively heterothallic fungus and infection of previously uninfected plants.


Asunto(s)
Mimetismo Biológico , Flores/anatomía & histología , Fusarium/crecimiento & desarrollo , Poaceae/anatomía & histología , Flores/crecimiento & desarrollo , Fusarium/genética , Guyana , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Poaceae/genética , Polinización/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
10.
PLoS Pathog ; 14(4): e1006946, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29649280

RESUMEN

Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Micotoxinas/química , Filogenia , Trichoderma/genética , Tricotecenos/química , ADN de Hongos , Genómica , Micotoxinas/farmacología , Trichoderma/efectos de los fármacos , Trichoderma/crecimiento & desarrollo , Tricotecenos/farmacología
11.
BMC Genomics ; 20(1): 314, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014248

RESUMEN

BACKGROUND: The Fusarium incarnatum-equiseti species complex (FIESC) comprises 33 phylogenetically distinct species that have been recovered from diverse biological sources, but have been most often isolated from agricultural plants and soils. Collectively, members of FIESC can produce diverse mycotoxins. However, because the species diversity of FIESC has been recognized only recently, the potential of species to cause mycotoxin contamination of crop plants is unclear. In this study, therefore, we used comparative genomics to investigate the distribution of and variation in genes and gene clusters responsible for the synthesis of mycotoxins and other secondary metabolites (SMs) in FIESC. RESULTS: We examined genomes of 13 members of FIESC that were selected based primarily on their phylogenetic diversity and/or occurrence on crops. The presence and absence of SM biosynthetic gene clusters varied markedly among the genomes. For example, the trichothecene mycotoxin as well as the carotenoid and fusarubin pigment clusters were present in all genomes examined, whereas the enniatin, fusarin, and zearalenone mycotoxin clusters were present in only some genomes. Some clusters exhibited discontinuous patterns of distribution in that their presence and absence was not correlated with the phylogenetic relationships of species. We also found evidence that cluster loss and horizontal gene transfer have contributed to such distribution patterns. For example, a combination of multiple phylogenetic analyses suggest that five NRPS and seven PKS genes were introduced into FIESC from other Fusarium lineages. CONCLUSION: Our results suggest that although the portion of the genome devoted to SM biosynthesis has remained similar during the evolutionary diversification of FIESC, the ability to produce SMs could be affected by the different distribution of related functional and complete gene clusters.


Asunto(s)
Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico/genética , Evolución Molecular , Genes Fúngicos/genética , Genómica , Familia de Multigenes/genética , Filogenia , Homología de Secuencia de Ácido Nucleico
12.
Fungal Genet Biol ; 122: 31-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439446

RESUMEN

Production of trichothecene toxins occurs in phylogenetically diverse fungi with different lifestyles. In these fungi, most homologs of the trichothecene biosynthetic gene cluster include the transcription factor genes tri6 and tri10. Analyses of phytopathogenic species of Fusarium indicate that the TRI6 and TRI10 proteins positively regulate genes required for synthesis of trichothecenes as well as farnesyl diphosphate (FPP), a precursor of the trichothecene and other terpenoids (e.g., ergosterol). However, the apparent absence of tri6 and tri10 in some trichothecene-producing fungi, and the presence of multiple paralogs of the genes in others suggest considerable variability in genetic regulation of trichothecene biosynthesis. To begin to investigate this variability, we functionally characterized tri10 in the saprotrophic fungus Trichoderma arundinaceum. We found that TRI10 is required for wild-type expression of tri genes and trichothecene production during the first 12 h of growth of T. arundinaceum. Comparison of the effect of tri10 deletion in T. arundinaceum and Fusarium species has provided evidence for similarities in the genetic regulation of trichothecene biosynthesis in these two fungi with different lifestyles. In contrast to trichothecenes, tri10 deletion increased production of ergosterol and the polyketide-derived metabolites aspinolides, which is more likely caused by an increase in the intracellular pool of FPP resulting from loss of trichothecene production. Furthermore, although it is unclear how TRI10 affects polyketide production, one possibility is that it does so by rechanneling terpene precursors.


Asunto(s)
Vías Biosintéticas/genética , Proteínas Fúngicas/genética , Terpenos/metabolismo , Trichoderma/genética , Ergosterol/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Eliminación de Secuencia , Trichoderma/metabolismo
13.
Appl Microbiol Biotechnol ; 103(19): 8087-8103, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31384992

RESUMEN

Trichothecenes are sesquiterpene toxins produced by diverse fungi, including some species of Trichoderma that are potential plant disease biocontrol agents. Trichoderma arundinaceum produces the trichothecene harzianum A (HA), which consists of the core trichothecene structure (12,13-epoxytrichothec-9-ene, EPT) with a linear polyketide-derived substituent (octa-2,4,6-trienedioyl) esterified to an oxygen at carbon atom 4. The genes required for biosynthesis of EPT and the eight-carbon polyketide precursor of the octa-2,4,6-trienedioyl substituent, as well as for esterification of the substituent to EPT have been described. However, genes required for conversion of the polyketide (octa-2,4,6-trienoic acid) to octa-2,4,6-trienedioyl-CoA, the immediate precursor of the substituent, have not been described. Here, we identified 91 cytochrome P450 monooxygenase genes in the genome sequence of T. arundinaceum, and provided evidence from gene deletion, complementation, cross-culture feeding, and chemical analyses that one of them (tri23) is required for conversion of octa-2,4,6-trienoic acid to octa-2,4,6-trienedioyl-CoA. The gene was detected in other HA-producing Trichoderma species, but not in species of other fungal genera that produce trichothecenes with an octa-2,4,6-trienoic acid-derived substituent. These findings indicate that tri23 is a trichothecene biosynthetic gene unique to Trichoderma species, which in turn suggests that modification of octa-2,4,6-trienoic acid during trichothecene biosynthesis has evolved independently in some fungi.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Trichoderma/enzimología , Trichoderma/metabolismo , Tricotecenos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Ácidos Grasos Insaturados/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Trichoderma/genética
14.
Mol Biol Evol ; 34(8): 2002-2015, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460114

RESUMEN

In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6-10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections.


Asunto(s)
Alcadienos/metabolismo , Compuestos Epoxi/metabolismo , Alcoholes Grasos/metabolismo , Genoma Fúngico/genética , Familia de Multigenes/genética , Ascomicetos/genética , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica/genética , Transferencia de Gen Horizontal/genética , Filogenia , Metabolismo Secundario/genética , Virulencia/genética
15.
Fungal Genet Biol ; 119: 29-46, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30121242

RESUMEN

Trichothecenes are terpenoid toxins produced by multiple fungal species with diverse lifestyles. In these fungi, the trichothecene biosynthetic gene (tri) cluster includes a gene encoding a Cys2His2 Zn-finger protein (TRI6). Analyses of plant pathogenic Fusarium species indicate that tri6 regulates tri gene expression. Here, we analyzed TRI6 function in the saprotrophic fungus Trichoderma arundinaceum, which produces the antimicrobial trichothecene harzianum A (HA). Deletion of the TRI6-encoding gene, tri6, blocked HA production and reduced expression of tri genes, and mevalonate biosynthetic genes required for synthesis of farnesyl diphosphate (FPP), the primary metabolite that feeds into trichothecene biosynthesis. In contrast, tri6 deletion did not affect expression of ergosterol biosynthetic genes required for synthesis of ergosterol from FPP, but did increase ergosterol production, perhaps because increased levels of FPP were available for ergosterol synthesis in the absence of trichothecene production. RNA-seq analyses indicated that genes in 10 of 49 secondary metabolite (SM) biosynthetic gene clusters in T. arundinaceum exhibited increased expression and five exhibited reduced expression in a tri6 deletion mutant (Δtri6). Despite the metabolic and transcriptional changes, Δtri6 mutants were not reduced in their ability to inhibit growth of fungal plant pathogens. Our results indicate that T. arundinaceum TRI6 regulates expression of both tri and mevalonate pathway genes. It remains to be determined whether the effects of tri6 deletion on expression of other SM clusters resulted because TRI6 can bind to promoter regions of cluster genes or because trichothecene production affects other SM pathways.


Asunto(s)
Trichoderma/genética , Tricotecenos/genética , Secuencia de Bases/genética , Ergosterol/metabolismo , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Metabolismo Secundario/genética , Eliminación de Secuencia/genética , Transcriptoma/genética
16.
Annu Rev Microbiol ; 67: 399-416, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24024636

RESUMEN

Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adaptive genome). Genes involved in virulence and host specialization are located on pathogenicity chromosomes within strains pathogenic to tomato (Fusarium oxysporum f. sp. lycopersici) and pea (Fusarium 'solani' f. sp. pisi). The experimental transfer of pathogenicity chromosomes from F. oxysporum f. sp. lycopersici into a nonpathogen transformed the latter into a tomato pathogen. Thus, horizontal transfer may explain the polyphyletic origins of host specificity within the genus. Additional genome-scale comparative and functional studies are needed to elucidate the evolution and diversity of pathogenicity mechanisms, which may help inform novel disease management strategies against fusarial pathogens.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidad , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/clasificación , Fusarium/metabolismo , Filogenia , Virulencia
17.
Fungal Genet Biol ; 103: 34-41, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28392426

RESUMEN

Surveys for crown rot (FCR) and head blight (FHB) of Algerian wheat conducted during 2014 and 2015 revealed that Fusarium culmorum strains producing 3-acetyl-deoxynivalenol (3ADON) or nivalenol (NIV) were the causal agents of these important diseases. Morphological identification of the isolates (n FCR=110, n FHB=30) was confirmed by sequencing a portion of TEF1. To assess mating type idiomorph, trichothecene chemotype potential and global population structure, the Algerian strains were compared with preliminary sample of F. culmorum from Italy (n=27), Australia (n=30) and the United States (n=28). A PCR assay for MAT idiomorph revealed that MAT1-1 and MAT1-2 strains were segregating in nearly equal proportions, except within Algeria where two-thirds of the strains were MAT1-2. An allele-specific PCR assay indicated that the 3ADON trichothecene genotype was predominant globally (83.8% 3ADON) and in each of the four countries sampled. In vitro toxin analyses confirmed trichothecene genotype PCR data and demonstrated that most of the strains tested (77%) produced culmorin. Global population genetic structure of 191 strains was assessed using nine microsatellite markers (SSRs). AMOVA of the clone corrected data indicated that 89% of the variation was within populations. Bayesian analysis of the SSR data identified two globally distributed, sympatric populations within which both trichothecene chemotypes and mating types were represented.


Asunto(s)
Fusarium/genética , Genética de Población , Micotoxinas/genética , Argelia , Fusarium/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología
18.
Fungal Genet Biol ; 89: 37-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826610

RESUMEN

Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi.


Asunto(s)
Productos Biológicos/metabolismo , Fusarium/enzimología , Fusarium/genética , Genes Fúngicos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Secuencia de Bases , ADN de Hongos , Fusarium/fisiología , Micotoxinas/biosíntesis , Micotoxinas/genética , Filogenia , Seudogenes , Metabolismo Secundario/genética , Análisis de Secuencia de ADN
19.
Fungal Genet Biol ; 95: 39-48, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497828

RESUMEN

Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (P<0.001) change in selection pressure was observed along the NX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective constraint.


Asunto(s)
Evolución Molecular , Fusarium/genética , Genes Fúngicos/genética , Filogenia , Tricotecenos/genética , Secuencia de Aminoácidos , Biodiversidad , Canadá , ADN de Hongos/análisis , ADN de Hongos/genética , Grano Comestible/microbiología , Proteínas Fúngicas/genética , Fusarium/clasificación , Fusarium/metabolismo , Geografía , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción , Especificidad de la Especie , Tricotecenos/biosíntesis , Tricotecenos/química , Estados Unidos
20.
Nature ; 464(7287): 367-73, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20237561

RESUMEN

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Asunto(s)
Cromosomas Fúngicos/genética , Fusarium/genética , Fusarium/patogenicidad , Genoma Fúngico/genética , Genómica , Evolución Molecular , Fusarium/clasificación , Interacciones Huésped-Parásitos/genética , Familia de Multigenes/genética , Fenotipo , Filogenia , Proteoma/genética , Análisis de Secuencia de ADN , Sintenía/genética , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA