Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Breast Cancer Res ; 23(1): 31, 2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676547

RESUMEN

BACKGROUND: Following the PALOMA-3 study results, the combination of palbociclib, a CDK4/6 inhibitor, with fulvestrant, a selective estrogen receptor degrader, has become a standard therapy in women with estrogen receptor-positive (ER+) HER2-negative (HER2-) metastatic breast cancer (MBC). Palbociclib has been shown to increase the progression-free survival (PFS) overall but no predictive biomarker of palbociclib efficacy has been validated so far. We thus evaluated whether early changes of circulating tumor DNA (ctDNA) levels are associated with palbociclib plus fulvestrant efficiency. METHODS: ER+ HER2- MBC patients were included in a prospective observational cohort before treatment initiation. Tumor response was assessed by radiological evaluation (RECIST v1.1) every 3 months. Plasma samples were collected before treatment (baseline), at day 15 (D15), at day 30 (D30), and at disease progression. We searched for somatic mutations from archived tumor tissues by targeted deep sequencing. For patients with somatic mutations identified, circulating tumor DNA (ctDNA) was tracked using digital droplet PCR. Ratios of ctDNA levels ([D15/baseline] and [D30/baseline]) were then correlated with prospectively registered patient characteristics and outcomes. RESULTS: Twenty-five of the 61 patients enrolled had a somatic mutation testable in plasma (NPIK3CA = 21, NTP53 = 2, NAKT1 = 2). At baseline, 84% of patients had detectable ctDNA levels but ctDNA levels had no prognostic impact on PFS (p = 0.10). Among those patients, ctDNA was still detected in 82% at D15 and 68% at D30. ctDNA clearance observed at day 30 was associated with longer PFS (HR = 7.2, 95% CI = 1.5-32.6, p = 0.004). On the contrary, a [D30/baseline] ctDNA ratio > 1 was associated with a shorter PFS (HR = 5.1, 95% CI = 1.4-18.3, p = 0.02) and all 5 patients with increased ctDNA levels at D30 showed disease progression after 3 months under palbociclib-fulvestrant. Finally, at the time of radiological tumor progression, ctDNA was detected in all patients tested. CONCLUSION: Our study demonstrates that the efficiency of palbociclib and fulvestrant can be monitored by serial analyses of ctDNA before radiological evaluation and that early ctDNA variation is a prognostic factor of PFS.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , ADN Tumoral Circulante , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/mortalidad , Femenino , Fulvestrant/administración & dosificación , Humanos , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia , Estadificación de Neoplasias , Piperazinas/administración & dosificación , Pronóstico , Piridinas/administración & dosificación , Análisis de Supervivencia , Resultado del Tratamiento
2.
Clin Chem ; 66(4): 606-613, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176763

RESUMEN

BACKGROUND: Microsatellite instability (MSI) has recently emerged as a predictive pan-tumor biomarker of immunotherapy efficacy, stimulating the development of diagnostic tools compatible with large-scale screening of patients. In this context, noninvasive detection of MSI from circulating tumor DNA stands as a promising diagnostic and posttreatment monitoring tool. METHODS: We developed drop-off droplet-digital PCR (ddPCR) assays targeting BAT-26, activin A receptor type 2A (ACVR2A), and defensin beta 105A/B (DEFB105A/B) microsatellite markers. Performances of the assays were measured on reconstitution experiments of various mutant allelic fractions, on 185 tumor samples with known MSI status, and on 72 blood samples collected from 42 patients with advanced colorectal or endometrial cancers before and/or during therapy. RESULTS: The 3 ddPCR assays reached analytical sensitivity <0.1% variant allelic frequency and could reliably detect and quantify MSI in both tumor and body fluid samples. High concordance between MSI status determination by the three-marker ddPCR test and the reference pentaplex method were observed (100% for colorectal tumors and 93% for other tumor types). Moreover, the 3 assays showed correlations with r ≥ 0.99 with other circulating tumor DNA markers and their dynamic during treatment correlated well with clinical response. CONCLUSIONS: This innovative approach for MSI detection provides a noninvasive, cost-effective, and fast diagnostic tool, well suited for large-scale screening of patients that may benefit from immunotherapy agents, as well as for monitoring treatment responses.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Endometriales/genética , Biopsia Líquida , Inestabilidad de Microsatélites , Reacción en Cadena de la Polimerasa/métodos , Receptores de Activinas Tipo II/genética , Biomarcadores de Tumor , Línea Celular Tumoral , ADN Tumoral Circulante/sangre , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Reacciones Falso Positivas , Femenino , Marcadores Genéticos , Humanos , Límite de Detección , Repeticiones de Microsatélite , beta-Defensinas/genética
3.
Mol Cell ; 47(6): 909-20, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22902559

RESUMEN

Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life.


Asunto(s)
Cadherinas/genética , Metilación de ADN , Embrión de Mamíferos/metabolismo , Impresión Genómica , Células Germinativas/metabolismo , Oocitos/metabolismo , Animales , Blastocisto/metabolismo , Embrión de Mamíferos/citología , Fertilización , Pruebas Genéticas , Ratones , Seudogenes , Análisis de Secuencia de ADN
4.
Clin Chem ; 64(2): 317-328, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29122835

RESUMEN

BACKGROUND: Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. METHODS: We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. RESULTS: The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. CONCLUSIONS: This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy.


Asunto(s)
Receptores ErbB/genética , Genes ras , Mutación , Neoplasias/genética , Reacción en Cadena de la Polimerasa/métodos , Biopsia , ADN Tumoral Circulante/sangre , Humanos , Límite de Detección , Biopsia Líquida , Sondas Moleculares , Neoplasias/sangre , Neoplasias/patología
5.
Nucleic Acids Res ; 44(18): 8714-8725, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27439714

RESUMEN

Use of low resolution single cell DNA FISH and population based high resolution chromosome conformation capture techniques have highlighted the importance of pairwise chromatin interactions in gene regulation. However, it is unlikely that associations involving regulatory elements act in isolation of other interacting partners that also influence their impact. Indeed, the influence of multi-loci interactions remains something of an enigma as beyond low-resolution DNA FISH we do not have the appropriate tools to analyze these. Here we present a method that uses standard 4C-seq data to identify multi-loci interactions from the same cell. We demonstrate the feasibility of our method using 4C-seq data sets that identify known pairwise and novel tri-loci interactions involving the Tcrb and Igk antigen receptor enhancers. We further show that the three Igk enhancers, MiEκ, 3'Eκ and Edκ, interact simultaneously in this super-enhancer cluster, which add to our previous findings showing that loss of one element decreases interactions between all three elements as well as reducing their transcriptional output. These findings underscore the functional importance of simultaneous interactions and provide new insight into the relationship between enhancer elements. Our method opens the door for studying multi-loci interactions and their impact on gene regulation in other biological settings.


Asunto(s)
Cromosomas/metabolismo , Sitios Genéticos , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN/métodos , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Receptor beta de Estrógeno/metabolismo , Genoma , Receptores de Antígenos de Linfocitos T alfa-beta
6.
Anal Chem ; 89(3): 1724-1733, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-27935690

RESUMEN

This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN/química , ADN/metabolismo , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
7.
Clin Chem ; 63(3): 691-699, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28073896

RESUMEN

BACKGROUND: In nonmetastatic triple-negative breast cancer (TNBC) patients, we investigated whether circulating tumor DNA (ctDNA) detection can reflect the tumor response to neoadjuvant chemotherapy (NCT) and detect minimal residual disease after surgery. METHODS: Ten milliliters of plasma were collected at 4 time points: before NCT; after 1 cycle; before surgery; after surgery. Customized droplet digital PCR (ddPCR) assays were used to track tumor protein p53 (TP53) mutations previously characterized in tumor tissue by massively parallel sequencing (MPS). RESULTS: Forty-six patients with nonmetastatic TNBC were enrolled. TP53 mutations were identified in 40 of them. Customized ddPCR probes were validated for 38 patients, with excellent correlation with MPS (r = 0.99), specificity (≥2 droplets/assay), and sensitivity (at least 0.1%). At baseline, ctDNA was detected in 27/36 patients (75%). Its detection was associated with mitotic index (P = 0.003), tumor grade (P = 0.003), and stage (P = 0.03). During treatment, we observed a drop of ctDNA levels in all patients but 1. No patient had detectable ctDNA after surgery. The patient with rising ctDNA levels experienced tumor progression during NCT. Pathological complete response (16/38 patients) was not correlated with ctDNA detection at any time point. ctDNA positivity after 1 cycle of NCT was correlated with shorter disease-free (P < 0.001) and overall (P = 0.006) survival. CONCLUSIONS: Customized ctDNA detection by ddPCR achieved a 75% detection rate at baseline. During NCT, ctDNA levels decreased quickly and minimal residual disease was not detected after surgery. However, a slow decrease of ctDNA level during NCT was strongly associated with shorter survival.


Asunto(s)
ADN de Neoplasias/sangre , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/terapia , Humanos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genética
8.
PLoS Comput Biol ; 12(3): e1004780, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26938081

RESUMEN

4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.


Asunto(s)
ADN Catalítico/química , ADN Catalítico/genética , Genoma/fisiología , Mapeo Restrictivo/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Secuencia de Bases , Sitios de Unión , Datos de Secuencia Molecular , Unión Proteica
9.
Int J Clin Oncol ; 22(3): 421-430, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28238187

RESUMEN

Circulating tumor cells (CTCs) are rare tumor cells and have been investigated as diagnostic, prognostic and predictive biomarkers in many types of cancer. Although CTCs are not currently used in clinical practice, CTC studies have accumulated a high level of clinical validity, especially in breast, lung, prostate and colorectal cancers. In this review, we present an overview of the current clinical validity of CTCs in metastatic and non-metastatic disease, and the main concepts and studies investigating the clinical utility of CTCs. In particular, this review will focus on breast, lung, colorectal and prostate cancer. Three major topics concerning the clinical utility of CTC are discussed-(1) treatment based on CTCs used as liquid biopsy, (2) treatment based on CTC count or CTC variations, and (3) treatment based on CTC biomarker expression. A summary of published or ongoing phase II and III trials is also presented.


Asunto(s)
Neoplasias/patología , Células Neoplásicas Circulantes/patología , Biomarcadores de Tumor/metabolismo , Biopsia , Neoplasias de la Mama/patología , Neoplasias Colorrectales/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Neoplasias/mortalidad , Neoplasias/terapia , Células Neoplásicas Circulantes/metabolismo , Patología Clínica/métodos , Pronóstico , Neoplasias de la Próstata/patología
10.
Methods Mol Biol ; 2804: 65-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753140

RESUMEN

In recent years, the analysis of circulating cell-free DNA (cfDNA) containing tumor-derived DNA has emerged as a noninvasive means for cancer monitoring and personalized medicine. However, the isolation of cfDNA from peripheral blood has remained a challenge due to the low abundance and high fragmentation of these molecules. Here, we present a dynamic Magnetic ExTRactiOn (METRO) protocol using microfluidic fluidized bed technology to isolate circulating cfDNA from raw biological materials such as undiluted serum. This protocol maximizes the surface area for DNA binding within the chip in order to capture short DNA fragments. It uses only a few µL of sample and reagents. The protocol can be automated, and it is fully compatible with sensitive DNA amplification methods such as droplet-based digital PCR (ddPCR).


Asunto(s)
Ácidos Nucleicos Libres de Células , Dispositivos Laboratorio en un Chip , Humanos , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Reacción en Cadena de la Polimerasa/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Magnetismo/métodos , Neoplasias/sangre , Neoplasias/genética , Neoplasias/diagnóstico
11.
PLoS Genet ; 6(11): e1001214, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21124941

RESUMEN

In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two orthogonal evolutionary forces: pressure to tightly regulate genes affecting the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline.


Asunto(s)
Evolución Biológica , Desarrollo Embrionario/genética , Impresión Genómica/genética , Mamíferos/embriología , Mamíferos/genética , Animales , Islas de CpG/genética , Metilación de ADN/genética , Desaminación/genética , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Humanos , Masculino , Ratones , Filogenia , Transducción de Señal/genética
12.
J Extracell Biol ; 1(7): e51, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38938580

RESUMEN

Detection of cell-free circulating tumour DNA (ctDNA) and cancer-specific extracellular vesicles (EVs) in patient blood have been widely explored as non-invasive biomarkers for cancer detection and disease follow up. However, most of the protocols used to isolate EVs co-isolate other components and the actual value of EV-associated markers remain unclear. To determine the optimal source of clinically-relevant circulating biomarkers in breast cancer, we applied a size exclusion chromatography (SEC) procedure to analyse separately the content in nucleic acids of EV-enriched and EV-depleted fractions, in comparison to total plasma. Both cellular and mitochondrial DNA (cellDNA and mtDNA) were detected in EV-rich and EV-poor fractions. Analysing specific mutations identified from tumour tissues, we detected tumour-specific cellular alleles in all SEC fractions. However, quantification of ctDNA from total plasma was more sensitive than from any SEC fractions. On the other hand, mtDNA was preferentially enriched in EV fractions from healthy donor, whereas cancer patients displayed more abundant mtDNA in total plasma, and equally distributed in all fractions. In contrast to nucleic acids, using a Multiplexed bead-based EV-analysis assay, we identified three surface proteins enriched in EVs from metastatic breast cancer plasma, suggesting that a small set of EV surface molecules could provide a disease signature. Our findings provide evidence that the detection of DNA within total circulating EVs does not add value as compared to the whole plasma, at least in the metastatic breast cancer patients used here. However, analysis of a subtype of EV-associated proteins may reliably identify cancer patients. These non-invasive biomarkers represent a promising tool for cancer diagnosis and real-time monitoring of treatment efficacy and these results will impact the development of therapeutic approaches using EVs as targets or biomarkers of cancer.

13.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454795

RESUMEN

Microfluidics has provided clinicians with new technologies to detect and analyze circulating tumor biomarkers in order to further improve their understanding of disease mechanism, as well as to improve patient management. Among these different biomarkers, circulating tumor cells have proven to be of high interest for different types of cancer and in particular for breast cancer. Here we focus our attention on a breast cancer subtype referred as HER2-positive breast cancer, this cancer being associated with an amplification of HER2 protein at the plasma membrane of cancer cells. Combined with therapies targeting the HER2 protein, HER2-HER3 dimerization blockade further improves a patient's outcome. In this work, we propose a new approach to CTC characterization by on-chip integrating proximity ligation assay, so that we can quantify the HER2-HER3 dimerization event at the level of single CTC. To achieve this, we developed a microfluidic approach combining both CTC capture, identification and HER2-HER3 status quantification by Proximity Ligation Assay (PLA). We first optimized and demonstrated the potential of the on-chip quantification of HER2-HER3 dimerization using cancer cell lines with various levels of HER2 overexpression and validated its clinical potential with a patient's sample treated or not with HER2-targeted therapy.

14.
Oncogene ; 41(49): 5289-5297, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36329125

RESUMEN

The use of conventional methods (immunohistochemistry, pentaplex PCR) for detecting microsatellite instability (MSI), a predictive biomarker of immunotherapy efficacy, is debated for cancers with low MSI prevalence, such as breast cancer (BC). We developed two multiplex drop-off droplet digital PCR (ddPCR) assays targeting four microsatellites, initially identified from public BC whole-genome sequencing dataset. Performances of the assays were investigated and 352 tumor DNA and 28 circulating cell-free DNA from BC patients, with unknown MSI status were blindly screened. Cross-validation of ddPCR MSI status with other MSI detection methods was performed. We then monitored circulating tumor DNA (ctDNA) dynamics before and during pembrolizumab immunotherapy in one patient with MSI-high (MSI-H) metastatic BC. The assays showed high analytical specificity and sensitivity (limit of detection = 0.16%). Among N = 380 samples, seven (1.8%) were found as MSI-H by ddPCR with six of them confirmed by next-generation sequencing (NGS). Specificity was 100% in N = 133 microsatellite stable BC submitted to NGS. In the patient with MSI-H metastatic BC, ctDNA monitoring revealed an early decrease of microsatellite mutant allelic frequencies during immunotherapy. These results demonstrated MSI detection by ddPCR, a non-invasive, fast and cost-effective approach, allowing for large pre-screening of BC patients who may benefit from immunotherapy.


Asunto(s)
Neoplasias de la Mama , ADN Tumoral Circulante , Neoplasias Colorrectales , Humanos , Femenino , Inestabilidad de Microsatélites , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa , Neoplasias Colorrectales/genética
15.
Cancers (Basel) ; 13(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885114

RESUMEN

BACKGROUND: The analysis of liquid biopsies, e.g., circulating tumor cells (CTCs) is an appealing diagnostic concept for targeted therapy selection. In this proof-of-concept study, we aimed to perform multiparametric analyses of CTCs to select targeted therapies for metastatic breast cancer patients. METHODS: First, CTCs of five metastatic breast cancer patients were analyzed by whole exome sequencing (WES). Based on the results, one patient was selected and monitored by longitudinal and multiparametric liquid biopsy analyses over more than three years, including WES, RNA profiling, and in vitro drug testing of CTCs. RESULTS: Mutations addressable by targeted therapies were detected in all patients, including mutations that were not detected in biopsies of the primary tumor. For the index patient, the clonal evolution of the tumor cells was retraced and resistance mechanisms were identified. The AKT1 E17K mutation was uncovered as the driver of the metastatic process. Drug testing on the patient's CTCs confirmed the efficacy of drugs targeting the AKT1 pathway. During a targeted therapy chosen based on the CTC characterization and including the mTOR inhibitor everolimus, CTC numbers dropped by 97.3% and the disease remained stable as determined by computer tomography/magnetic resonance imaging. CONCLUSION: These results illustrate the strength of a multiparametric CTC analysis to choose and validate targeted therapies to optimize cancer treatment in the future. Furthermore, from a scientific point of view, such studies promote the understanding of the biology of CTCs during different treatment regimens.

16.
NPJ Breast Cancer ; 7(1): 115, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504096

RESUMEN

Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are two cancer-derived blood biomarkers that inform on patient prognosis and treatment efficacy in breast cancer. We prospectively evaluated the clinical validity of quantifying both CTCs (CellSearch) and ctDNA (targeted next-generation sequencing). Their combined value as prognostic and early monitoring markers was assessed in 198 HER2-negative metastatic breast cancer patients. All patients were included in the prospective multicenter UCBG study COMET (NCT01745757) and treated by first-line chemotherapy with weekly paclitaxel and bevacizumab. Blood samples were obtained at baseline and before the second cycle of chemotherapy. At baseline, CTCs and ctDNA were respectively detected in 72 and 74% of patients and were moderately correlated (Kendall's τ = 0.3). Only 26 (13%) patients had neither detectable ctDNA nor CTCs. Variants were most frequently observed in TP53 and PIK3CA genes. KMT2C/MLL3 variants detected in ctDNA were significantly associated with a lower CTC count, while the opposite trend was seen with GATA3 alterations. Both CTC and ctDNA levels at baseline and after four weeks of treatment were correlated with survival. For progression-free and overall survival, the best multivariate prognostic model included tumor subtype (triple negative vs other), grade (grade 3 vs other), ctDNA variant allele frequency (VAF) at baseline (per 10% increase), and CTC count at four weeks (≥5CTC/7.5 mL). Overall, this study demonstrates that CTCs and ctDNA have nonoverlapping detection profiles and complementary prognostic values in metastatic breast cancer patients. A comprehensive liquid-biopsy approach may involve simultaneous detection of ctDNA and CTCs.

17.
Med Sci (Paris) ; 26(5): 497-503, 2010 May.
Artículo en Francés | MEDLINE | ID: mdl-20510148

RESUMEN

Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.


Asunto(s)
Evolución Biológica , Impresión Genómica , Mamíferos/genética , Animales , Metilación de ADN , Elementos Transponibles de ADN , Epigénesis Genética/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Impresión Genómica/genética , Humanos , Masculino , Mamíferos/embriología , Marsupiales/embriología , Marsupiales/genética , Ratones/embriología , Ratones/genética , Filogenia , Placenta/fisiología , Ornitorrinco/embriología , Ornitorrinco/genética , Embarazo , Especificidad de la Especie , Vertebrados/embriología , Vertebrados/genética
18.
Cancers (Basel) ; 12(6)2020 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517171

RESUMEN

Background: Focal amplification of fibroblast growth factor receptor 1 (FGFR1) defines a subgroup of breast cancers with poor prognosis and high risk of recurrence. We sought to demonstrate the potential of circulating cell-free DNA (cfDNA) analysis to evaluate FGFR1 copy numbers from a cohort of 100 metastatic breast cancer (mBC) patients. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue samples were screened for FGFR1 amplification by FISH, and positive cases were confirmed with a microarray platform (OncoscanTM). Subsequently, cfDNA was evaluated by two approaches, i.e., mFAST-SeqS and shallow whole-genome sequencing (sWGS), to estimate the circulating tumor DNA (ctDNA) allele fraction (AF) and to evaluate the FGFR1 status. Results: Tissue-based analyses identified FGFR1 amplifications in 20/100 tumors. All cases with a ctDNA AF above 3% (n = 12) showed concordance for FGFR1 status between tissue and cfDNA. In one case, we were able to detect a high-level FGFR1 amplification, although the ctDNA AF was below 1%. Furthermore, high levels of ctDNA indicated an association with unfavorable prognosis based on overall survival. Conclusions: Screening for FGFR1 amplification in ctDNA might represent a viable strategy to identify patients eligible for treatment by FGFR inhibition, and mBC ctDNA levels might be used for the evaluation of prognosis in clinical drug trials.

19.
Oncogene ; 39(14): 2987-2995, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042112

RESUMEN

Activating mutations in the estrogen receptor 1 (ESR1) gene confer resistance to aromatase inhibitors (AI), and may be targeted by selective estrogen receptor downregulators. We designed a multiplex droplet digital PCR (ddPCR), which combines a drop-off assay, targeting the clustered hotspot mutations found in exon 8, with an unconventional assay interrogating the E380Q mutation in exon 5. We assessed its sensitivity in vitro using synthetic oligonucleotides, harboring E380Q, L536R, Y537C, Y537N, Y537S, or D538G mutations. Further validation was performed on plasma samples from a prospective study and compared with next generation sequencing (NGS) data. The multiplex ESR1-ddPCR showed a high sensitivity with a limit of detection ranging from 0.07 to 0.19% in mutant allele frequency. The screening of plasma samples from patients with AI-resistant metastatic breast cancer identified ESR1 mutations in 29% of them, all mutations being confirmed by NGS. In addition, this test identifies patients harboring polyclonal alterations. Furthermore, the monitoring of circulating tumor DNA using this technique during treatment follow-up predicts the clinical benefit of palbociclib-fulvestrant. The multiplex ESR1-ddPCR detects, in a single reaction, the most frequent ESR1 activating mutations with good sensitivity. This method allows real-time liquid biopsy for ESR1 mutation monitoring in large cohorts of patients.


Asunto(s)
Receptor alfa de Estrógeno/genética , Mutación/genética , Plasma/química , Reacción en Cadena de la Polimerasa/métodos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , ADN Tumoral Circulante , Exones/genética , Femenino , Fulvestrant/farmacología , Frecuencia de los Genes/genética , Humanos , Piperazinas/farmacología , Estudios Prospectivos , Piridinas/farmacología
20.
JNCI Cancer Spectr ; 3(2): pkz026, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31360902

RESUMEN

Circulating tumor cells (CTCs) are particularly rare in non-metastatic breast cancer, and the clinical validity of CTC detection in that clinical setting was initially not well recognized. A cytological CTC detection device (CellSearch) fulfilling the CLIA requirements for analytical validity was subsequently developed and, in 2008, we reported the first study (REMAGUS02) showing that distant metastasis-free survival was shorter in early breast cancer patients with one or more CTCs. In the past 10 years, other clinical studies and meta-analyses have established CTC detection as a level-of-evidence 1 prognostic biomarker for local relapses, distant relapses, and overall survival. This review summarizes available data on CTC detection and the promises of this proliferation- and subtype-independent metastasis-associated biomarker in early breast cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA