Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563044

RESUMEN

The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Enfermedades del Sistema Nervioso , Animales , ADN/genética , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Mamíferos/genética , Enfermedades del Sistema Nervioso/genética , Reparación del ADN por Recombinación
2.
Mol Brain ; 17(1): 32, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840222

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the motor neuron. One aspect of the neuropathology involved in ALS includes increased genomic damage and impaired DNA repair capability. The TAR-DNA binding protein 43 (TDP43) has been associated with both sporadic and familial forms of ALS, and is typically observed as cytosolic mislocalization of protein aggregates, termed TDP43 proteinopathy. TDP43 is a ubiquitous RNA/DNA binding protein with functional implications in a wide range of disease processes, including the repair of DNA double-strand breaks (DSBs). While TDP43 is widely known to regulate RNA metabolism, our lab has reported it also functions directly at the protein level to facilitate DNA repair. Here, we show that the TDP43 protein interacts with DNA mismatch repair (MMR) proteins MLH1 and MSH6 in a DNA damage-inducible manner. We utilized differentiated SH-SY5Y neuronal cultures to identify this inducible relationship using complementary approaches of proximity ligation assay (PLA) and co-immunoprecipitation (CoIP) assay. We observed that signals of TDP43 interaction with MLH1 and MSH6 increased significantly following a 2 h treatment of 10 µM methylmethanesulfonate (MMS), a DNA alkylating agent used to induce MMR repair. Likewise, we observed this effect was abolished in cell lines treated with siRNA directed against TDP43. Finally, we demonstrated these protein interactions were significantly increased in lumbar spinal cord samples of ALS-affected patients compared to age-matched controls. These results will inform our future studies to understand the mechanisms and consequences of this TDP43-MMR interaction in the context of ALS-affected neurons.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN , Homólogo 1 de la Proteína MutL , Unión Proteica , Humanos , Proteínas de Unión al ADN/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Unión Proteica/efectos de los fármacos , Línea Celular Tumoral , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Neuronas/metabolismo , Persona de Mediana Edad , Masculino
3.
Res Sq ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826483

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the motor neuron. One aspect of the neuropathology involved in ALS includes increased genomic damage and impaired DNA repair capability. The TAR-DNA binding protein 43 (TDP43) has been associated with both sporadic and familial forms of ALS, and is typically observed as cytosolic mislocalization of protein aggregates, termed TDP43 proteinopathy. TDP43 is a ubiquitous RNA/DNA binding protein with functional implications in a wide range of disease processes, including the repair of DNA double strand breaks (DSBs). While TDP43 is widely known to regulate RNA metabolism, our lab has reported it also functions directly at the protein level to facilitate DNA repair. Here, we show that TDP43 protein interacts with DNA mismatch repair (MMR) proteins MLH1 and MSH6 in a DNA damage-inducible manner. We utilized differentiated SH-SY5Y neuronal cultures to identify this inducible relationship using complimentary approaches of proximity ligation assay (PLA) and co-immunoprecipitation (CoIP) assay. We observed that signals of TDP43 interaction with MLH1 and MSH6 increased significantly following a 2 hr treatment of 10µM methylmethanesulfonate (MMS), a DNA alkylating agent used to induce MMR repair. Likewise, we observed this effect was abolished in cell lines treated with siRNA directed against TDP43. Finally, we demonstrated these protein interactions were significantly increased in lumbar spinal cord samples of ALS-affected patients compared to age-matched controls. These results will inform our future studies to understand the mechanisms and consequences of this TDP43-MMR interaction in the context of ALS affected neurons.

4.
Ageing Res Rev ; : 102413, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032612

RESUMEN

RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1,500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.

5.
Interv Neuroradiol ; : 15910199241263633, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034153

RESUMEN

Subdural hematoma (SDH) refers to the collection of blood between the dura matter and the arachnoid membrane. Advancements in imaging technology have enabled the categorization of SDH based on specific imaging characteristics, causative factors, and the onset of symptoms. Given that the prognosis of SDHs varies significantly and is contingent upon the size and chronicity of the hemorrhage, a comprehensive understanding of its subtypes may carry crucial treatment implications. For example, an acute SDH classically results from severe traumatic brain injury and appears as a homogenous, crescent-shaped hyperdense extra-axial collection. If not treated, over the course of 1-3 weeks, this hematoma will evolve into a sub-acute phenotype as a consequence of subdural effusion and demonstrate mixed-density hemorrhage on imaging. Chronic SDH (cSDH) becomes the end result of an untreated SDH, with neo-membranization and neo-angiogenesis from branches of the middle meningeal artery driving a mass-like growth pattern. This review article aims to elucidate the complex anatomical features of the end-stage cSDH, with a particular focus on reconceptualization of this entity based on its mass-like growth patterns, and how this is driving a shift towards endovascular treatment.

6.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798341

RESUMEN

TDP43 is an RNA/DNA binding protein increasingly recognized for its role in neurodegenerative conditions including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As characterized by its aberrant nuclear export and cytoplasmic aggregation, TDP43 proteinopathy is a hallmark feature in over 95% of ALS/FTD cases, leading to the formation of detrimental cytosolic aggregates and a reduction in nuclear functionality within neurons. Building on our prior work linking TDP43 proteinopathy to the accumulation of DNA double-strand breaks (DSBs) in neurons, the present investigation uncovers a novel regulatory relationship between TDP43 and DNA mismatch repair (MMR) gene expressions. Here, we show that TDP43 depletion or overexpression directly affects the expression of key MMR genes. Alterations include MLH1, MSH2, MSH3, MSH6, and PMS2 levels across various primary cell lines, independent of their proliferative status. Our results specifically establish that TDP43 selectively influences the expression of MLH1 and MSH6 by influencing their alternative transcript splicing patterns and stability. We furthermore find aberrant MMR gene expression is linked to TDP43 proteinopathy in two distinct ALS mouse models and post-mortem brain and spinal cord tissues of ALS patients. Notably, MMR depletion resulted in the partial rescue of TDP43 proteinopathy-induced DNA damage and signaling. Moreover, bioinformatics analysis of the TCGA cancer database reveals significant associations between TDP43 expression, MMR gene expression, and mutational burden across multiple cancers. Collectively, our findings implicate TDP43 as a critical regulator of the MMR pathway and unveil its broad impact on the etiology of both neurodegenerative and neoplastic pathologies.

7.
Res Sq ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37461717

RESUMEN

Fused-in Sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered expression profiles of mRNAs and lncRNAs in iPSCs. We identified key differentially regulated TAR pairs, including LMO3, TMEM132D, ERMN, GPR149, CRACD, and ZNF404 in mutant FUS iPSCs. We performed reverse transcription PCR (RT-PCR) validation in iPSCs and iMNs. Validation confirmed RNA-Seq findings and suggested that mutant FUS-induced transcriptional alterations persisted from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis that were likely altered by FUS mutations. Ingenuity Pathway Analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations related to RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into the molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.

8.
Cells ; 12(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887305

RESUMEN

Fused-in sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs) and differentially expressed lncRNAs (DELs) and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered the expression profiles of mRNAs and lncRNAs in iPSCs. Using this large dataset, we identified and verified six key differentially regulated TAR pairs in iPSCs that were also altered in iMNs. These target transcripts included: GPR149, NR4A, LMO3, SLC15A4, ZNF404, and CRACD. These findings indicated that selected mutant FUS-induced transcriptional alterations persist from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis as likely altered by these FUS mutations. Furthermore, ingenuity pathway analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations between RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into potential molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , ARN Largo no Codificante , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neuronas Motoras/metabolismo , Mutación/genética , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
9.
Ageing Res Rev ; 80: 101687, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843590

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Anciano , Encéfalo/metabolismo , COVID-19/complicaciones , Hemorragia , Humanos , Enfermedades del Sistema Nervioso/patología , SARS-CoV-2
10.
Genome Announc ; 3(5)2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26430049

RESUMEN

Klebsiella pneumoniae is a leading cause of nosocomial infections in the United States. Due to the emergence of multidrug-resistant strains, phages targeting K. pneumoniae may be a useful alternative against this pathogen. Here, we announce the complete genome of K. pneumoniae pseudo-T-even myophage Matisse and describe its features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA