Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 42(3): 499-511, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25769610

RESUMEN

CD4(+) T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4(+) T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells.


Asunto(s)
Linaje de la Célula/efectos de los fármacos , Receptores de Ácido Retinoico/genética , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Células TH1/efectos de los fármacos , Células Th17/efectos de los fármacos , Tretinoina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Homeostasis/efectos de los fármacos , Homeostasis/inmunología , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Ácido Retinoico/inmunología , Receptor alfa de Ácido Retinoico , Transducción de Señal , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Células TH1/citología , Células TH1/inmunología , Células Th17/citología , Células Th17/inmunología , Tretinoina/inmunología
2.
Hum Mol Genet ; 27(3): 421-429, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29177435

RESUMEN

The omnigenic model of complex disease stipulates that the majority of the heritability will be explained by the effects of common variation on genes in the periphery of core disease pathways. Rare variant associations, expected to explain far less of the heritability, may be enriched in core disease genes and thus will be instrumental in the understanding of complex disease pathogenesis and their potential therapeutic targets. Here, using complementary whole-exome sequencing, high-density imputation, and in vitro cellular assays, we identify candidate core genes in the pathogenesis of systemic lupus erythematosus (SLE). Using extreme-phenotype sampling, we sequenced the exomes of 30 SLE parent-affected-offspring trios and identified 14 genes with missense de novo mutations (DNM), none of which are within the >80 SLE susceptibility loci implicated through genome-wide association studies. In a follow-up cohort of 10, 995 individuals of matched European ancestry, we imputed genotype data to the density of the combined UK10K-1000 genomes Phase III reference panel across the 14 candidate genes. Gene-level analyses indicate three functional candidates: DNMT3A, PRKCD, and C1QTNF4. We identify a burden of rare variants across PRKCD associated with SLE risk (P = 0.0028), and across DNMT3A associated with two severe disease prognosis sub-phenotypes (P = 0.0005 and P = 0.0033). We further characterise the TNF-dependent functions of the third candidate gene C1QTNF4 on NF-κB activation and apoptosis, which are inhibited by the p.His198Gln DNM. Our results identify three novel genes in SLE susceptibility and support extreme-phenotype sampling and DNM gene discovery to aid the search for core disease genes implicated through rare variation.


Asunto(s)
Lupus Eritematoso Sistémico/genética , Adulto , Autoanticuerpos , Cromatografía en Gel , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Células HEK293 , Humanos , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Proteína Quinasa C-delta/genética , Adulto Joven
3.
J Am Acad Dermatol ; 83(2): 447-454, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31786163

RESUMEN

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary blistering disorder due to a lack of type VII collagen. At present, treatment is mainly supportive. OBJECTIVES: To determine whether intravenous allogeneic bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs) are safe in RDEB adults and if the cells improve wound healing and quality of life. METHODS: We conducted a prospective, phase I/II, open-label study recruiting 10 RDEB adults to receive 2 intravenous infusions of BM-MSCs (on day 0 and day 14; each dose 2-4 × 106 cells/kg). RESULTS: BM-MSCs were well tolerated with no serious adverse events to 12 months. Regarding efficacy, there was a transient reduction in disease activity scores (8/10 subjects) and a significant reduction in itch. One individual showed a transient increase in type VII collagen. LIMITATIONS: Open-label trial with no placebo. CONCLUSIONS: MSC infusion is safe in RDEB adults and can have clinical benefits for at least 2 months.


Asunto(s)
Epidermólisis Ampollosa Distrófica/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Prurito/terapia , Adolescente , Adulto , Anciano , Epidermólisis Ampollosa Distrófica/complicaciones , Epidermólisis Ampollosa Distrófica/diagnóstico , Femenino , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Prurito/diagnóstico , Prurito/etiología , Calidad de Vida , Índice de Severidad de la Enfermedad , Trasplante Homólogo/métodos , Resultado del Tratamiento , Cicatrización de Heridas , Adulto Joven
4.
Blood ; 127(26): 3387-97, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27121473

RESUMEN

Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.


Asunto(s)
Reparación del ADN , Genoma Humano , Inestabilidad Genómica , Síndrome de Sézary/genética , Supervivencia Celular/genética , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Sézary/metabolismo , Transducción de Señal/genética
5.
Lancet ; 385 Suppl 1: S25, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26312847

RESUMEN

BACKGROUND: CD4 T cells with features of both T-helper-type 1 (Th1) and 17 (Th17) cells have been implicated in several autoimmune diseases suggesting that plasticity among CD4 T-cell lineages is potentially pathogenic. However, the factors that regulate T-cell lineage stability are largely unknown. Retinoic acid (RA) is synthesised at sites of inflammation. We hypothesised that retinoic acid, a profound epigenetic modifier, could regulate T-cell lineage stability. METHODS: We used a mouse model in which retinoic acid signalling is specifically ablated within the T-cell compartment through overexpression of a dominant negative retinoic acid receptor α (RARα) (dnRARα mice) to investigate its role in the regulation of Th1 lineage stability. Genome-wide ChIP-seq analysis was done to identify RARα targets. In parallel, we performed global mapping of regulatory regions, termed enhancers, to gain mechanistic insight into retinoic acid regulation of T-cell fate. The in-vivo relevance of our findings was determined in a model of oral antigen-induced intestinal inflammation. FINDINGS: We found that retinoic acid is crucial for maintenance of the Th1 lineage. Abrogation of retinoic acid signalling in Th1 cells resulted in loss of T-bet expression and STAT4 activity. Th1 cells from dnRARα mice showed enhanced plasticity with the emergence of hybrid Th1-Th17 and Th17 effector cells. Global analysis of RARα binding and enhancer mapping revealed that RA-RARα directly regulated enhancer activity at Th1 lineage defining genes while repressing genes that regulate Th17 cell fate. Retinoic acid inhibition of Th1 plasticity was essential for maintaining appropriate Th cell responses in vivo and preventing autoimmune intestinal inflammation. INTERPRETATION: Our study has identified RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1 cells and defines a new pathway for the development of pathogenic Th17 cells. Retinoids might be novel therapeutic agents for Th17-associated autoimmune diseases. FUNDING: Wellcome Trust.

6.
Am J Hum Genet ; 89(3): 432-7, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21839423

RESUMEN

Generalized pustular psoriasis (GPP) is a rare and yet potentially lethal clinical variant of psoriasis, characterized by the formation of sterile cutaneous pustules, neutrophilia, fever and features of systemic inflammation. We sequenced the exomes of five unrelated individuals diagnosed with GPP. Nonsynonymous, splice-site, insertion, and deletion variants with an estimated population frequency of <0.01 were considered as candidate pathogenic mutations. A homozygous c.338C>T (p.Ser113Leu) missense substitution of IL36RN was identified in two individuals, with a third subject found to be a compound heterozygote for c.338C>T (p.Ser113Leu) and a c.142C>T (p.Arg48Trp) missense substitution. IL36RN (previously known as IL1F5) encodes an IL-1 family receptor antagonist, which opposes the activity of the IL-36A and IL-36G innate cytokines. Homology searches revealed that GPP mutations alter evolutionarily conserved residues. Homozygosity for the c.338C>T (p.Ser113Leu) variant is associated with an elevated proinflammatory response following ex vivo stimulation with IL36A. These findings suggest loss of function of IL36RN as the genetic basis of GPP and implicate innate immune dysregulation in this severe episodic inflammatory disease, thereby highlighting IL-1 signaling as a potential target for therapeutic intervention.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Inmunidad Innata/genética , Interleucinas/genética , Modelos Moleculares , Psoriasis/genética , Niño , Preescolar , Femenino , Humanos , Inmunidad Innata/inmunología , Interleucinas/inmunología , Interleucinas/metabolismo , Masculino , Persona de Mediana Edad , Mutación Missense/genética , Linaje , Psoriasis/inmunología , Análisis de Secuencia de ADN
7.
PLoS One ; 19(6): e0305422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870140

RESUMEN

Inherited retinal dystrophies comprise a clinically complex and heterogenous group of diseases characterized by visual impairment due to pathogenic variants of over 300 different genes. Accurately identifying the causative gene and associated variant is crucial for the definitive diagnosis and subsequent selection of precise treatments. Consequently, well-validated genetic tests are required in the clinical practice. Here, we report the analytical and clinical validation of a next-generation sequencing targeted gene panel, the PrismGuide IRD Panel System. This system enables comprehensive genome profiling of 82 genes related to inherited retinal dystrophies. The PrismGuide IRD Panel System demonstrated 100% (n = 43) concordance with Sanger sequencing in detecting single-nucleotide variants, small insertions, and small deletions in the target genes and also in assessing their zygosity. It also identified copy-number loss in four out of five cases. When assessing precision, we evaluated the reproducibility of variant detection with 2,160 variants in 144 replicates and found 100% agreement in terms of single-nucleotide variants (n = 1,584) and small insertions and deletions (n = 576). Furthermore, the PrismGuide IRD Panel System generated sufficient read depth for variant calls across the purine-rich and highly repetitive open-reading frame 15 region of RPGR and detected all five variants tested. These results show that the PrismGuide IRD Panel System can accurately and consistently detect single-nucleotide variants and small insertions and deletions. Thus, the PrismGuide IRD Panel System could serve as useful tool that is applicable in clinical practice for identifying the causative genes based on the detection and interpretation of variants in patients with inherited retinal dystrophies and can contribute to a precise molecular diagnosis and targeted treatments.


Asunto(s)
Distrofias Retinianas , Humanos , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reproducibilidad de los Resultados , Femenino , Masculino , Pruebas Genéticas/métodos , Polimorfismo de Nucleótido Simple , Genoma Humano/genética
8.
Life Sci Alliance ; 4(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34531288

RESUMEN

Gene expression programs controlled by lineage-determining transcription factors are often conserved between species. However, infectious diseases have exerted profound evolutionary pressure, and therefore the genes regulated by immune-specific transcription factors might be expected to exhibit greater divergence. T-bet (Tbx21) is the immune-specific, lineage-specifying transcription factor for T helper type I (Th1) immunity, which is fundamental for the immune response to intracellular pathogens but also underlies inflammatory diseases. We compared T-bet genomic targets between mouse and human CD4+ T cells and correlated T-bet binding patterns with species-specific gene expression. Remarkably, we found that the majority of T-bet target genes are conserved between mouse and human, either via preservation of binding sites or via alternative binding sites associated with transposon-linked insertion. Species-specific T-bet binding was associated with differences in transcription factor-binding motifs and species-specific expression of associated genes. These results provide a genome-wide cross-species comparison of Th1 gene regulation that will enable more accurate translation of genetic targets and therapeutics from pre-clinical models of inflammatory and infectious diseases and cancer into human clinical trials.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas de Dominio T Box/genética , Células TH1/fisiología , Animales , Sitios de Unión/genética , Bases de Datos Genéticas , Expresión Génica/genética , Genoma/genética , Humanos , Ratones , Unión Proteica/genética , Proteínas de Dominio T Box/metabolismo , Células TH1/inmunología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcriptoma/genética
9.
Nat Commun ; 10(1): 1150, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850646

RESUMEN

Frontal fibrosing alopecia (FFA) is a recently described inflammatory and scarring type of hair loss affecting almost exclusively women. Despite a dramatic recent increase in incidence the aetiopathogenesis of FFA remains unknown. We undertake genome-wide association studies in females from a UK cohort, comprising 844 cases and 3,760 controls, a Spanish cohort of 172 cases and 385 controls, and perform statistical meta-analysis. We observe genome-wide significant association with FFA at four genomic loci: 2p22.2, 6p21.1, 8q24.22 and 15q2.1. Within the 6p21.1 locus, fine-mapping indicates that the association is driven by the HLA-B*07:02 allele. At 2p22.1, we implicate a putative causal missense variant in CYP1B1, encoding the homonymous xenobiotic- and hormone-processing enzyme. Transcriptomic analysis of affected scalp tissue highlights overrepresentation of transcripts encoding components of innate and adaptive immune response pathways. These findings provide insight into disease pathogenesis and characterise FFA as a genetically predisposed immuno-inflammatory disorder driven by HLA-B*07:02.


Asunto(s)
Alopecia/congénito , Sitios Genéticos , Predisposición Genética a la Enfermedad , Antígeno HLA-B7/genética , Transcriptoma/inmunología , Inmunidad Adaptativa , Alopecia/diagnóstico , Alopecia/genética , Alopecia/fisiopatología , Estudios de Casos y Controles , Estudios de Cohortes , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/inmunología , Femenino , Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Antígeno HLA-B7/inmunología , Humanos , Inmunidad Innata , Polimorfismo de Nucleótido Simple
10.
Sci Transl Med ; 6(244): 244ra90, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25009230

RESUMEN

Previous attempts to gain insight into the pathogenesis of psoriasis and eczema by comparing their molecular signatures were hampered by the high interindividual variability of those complex diseases. In patients affected by both psoriasis and nonatopic or atopic eczema simultaneously (n = 24), an intraindividual comparison of the molecular signatures of psoriasis and eczema identified genes and signaling pathways regulated in common and exclusive for each disease across all patients. Psoriasis-specific genes were important regulators of glucose and lipid metabolism, epidermal differentiation, as well as immune mediators of T helper 17 (TH17) responses, interleukin-10 (IL-10) family cytokines, and IL-36. Genes in eczema related to epidermal barrier, reduced innate immunity, increased IL-6, and a TH2 signature. Within eczema subtypes, a mutually exclusive regulation of epidermal differentiation genes was observed. Furthermore, only contact eczema was driven by inflammasome activation, apoptosis, and cellular adhesion. On the basis of this comprehensive picture of the pathogenesis of psoriasis and eczema, a disease classifier consisting of NOS2 and CCL27 was created. In an independent cohort of eczema (n = 28) and psoriasis patients (n = 25), respectively, this classifier diagnosed all patients correctly and also identified initially misdiagnosed or clinically undifferentiated patients.


Asunto(s)
Eccema/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma Humano/genética , Psoriasis/genética , Adulto , Estudios de Cohortes , Eccema/diagnóstico , Eccema/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , Psoriasis/diagnóstico , Psoriasis/patología , Transducción de Señal/genética
11.
PLoS One ; 8(8): e71690, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990973

RESUMEN

Psoriasis is an immune-mediated skin disorder that is inherited as a complex genetic trait. Although genome-wide association scans (GWAS) have identified 36 disease susceptibility regions, more than 50% of the genetic variance can be attributed to a single Major Histocompatibility Complex (MHC) locus, known as PSORS1. Genetic studies indicate that HLA-C is the strongest PSORS1 candidate gene, since markers tagging HLA-Cw*0602 consistently generate the most significant association signals in GWAS. However, it is unclear whether HLA-Cw*0602 is itself the causal PSORS1 allele, especially as the role of SNPs that may affect its expression has not been investigated. Here, we have undertaken an in-depth molecular characterization of the PSORS1 interval, with a view to identifying regulatory variants that may contribute to disease susceptibility. By analysing high-density SNP data, we refined PSORS1 to a 179 kb region encompassing HLA-C and the neighbouring HCG27 pseudogene. We compared multiple MHC sequences spanning this refined locus and identified 144 candidate susceptibility variants, which are unique to chromosomes bearing HLA-Cw*0602. In parallel, we investigated the epigenetic profile of the critical PSORS1 interval and uncovered three enhancer elements likely to be active in T lymphocytes. Finally we showed that nine candidate susceptibility SNPs map within a HLA-C enhancer and that three of these variants co-localise with binding sites for immune-related transcription factors. These data indicate that SNPs affecting HLA-Cw*0602 expression are likely to contribute to psoriasis susceptibility and highlight the importance of integrating multiple experimental approaches in the investigation of complex genomic regions such as the MHC.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Antígenos HLA-C/genética , Psoriasis/genética , Alelos , Mapeo Cromosómico/métodos , Cromosomas Humanos Par 6/genética , Epigénesis Genética , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Proteínas/genética , ARN Largo no Codificante , Análisis de Secuencia de ADN , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA