Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 135(5): 960-73, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041756

RESUMEN

To explore how gene products, required for the initiation of synaptic growth, move from the cell body of the sensory neuron to its presynaptic terminals, and from the cell body of the motor neuron to its postsynaptic dendritic spines, we have investigated the anterograde transport machinery in both the sensory and motor neurons of the gill-withdrawal reflex of Aplysia. We found that the induction of long-term facilitation (LTF) by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia, requires upregulation of kinesin heavy chain (KHC) in both pre- and postsynaptic neurons. Indeed, upregulation of KHC in the presynaptic neurons alone is sufficient for the induction of LTF. However, KHC is not required for the persistence of LTF. Thus, in addition to transcriptional activation in the nucleus and local protein synthesis at the synapse, our studies have identified a third component critical for long-term learning-related plasticity: the coordinated upregulation of kinesin-mediated transport.


Asunto(s)
Aplysia/fisiología , Cinesinas/fisiología , Neuronas/fisiología , Animales , Branquias/fisiología , Plasticidad Neuronal , Sinapsis/fisiología , Regulación hacia Arriba
2.
Mol Cell Neurosci ; 123: 103786, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252719

RESUMEN

Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.


Asunto(s)
Transporte Axonal , Sinapsis , Transporte Axonal/fisiología , Sinapsis/metabolismo , Neuronas/metabolismo , Transducción de Señal , Axones/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(43): E10197-E10205, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297415

RESUMEN

Despite the growing evidence suggesting that long noncoding RNAs (lncRNAs) are critical regulators of several biological processes, their functions in the nervous system remain elusive. We have identified an lncRNA, GM12371, in hippocampal neurons that is enriched in the nucleus and necessary for synaptic communication, synapse density, synapse morphology, and dendritic tree complexity. Mechanistically, GM12371 regulates the expression of several genes involved in neuronal development and differentiation, as well as expression of specific lncRNAs and their cognate mRNA targets. Furthermore, we find that cAMP-PKA signaling up-regulates the expression of GM12371 and that its expression is essential for the activity-dependent changes in synaptic transmission in hippocampal neurons. Taken together, our data establish a key role for GM12371 in regulating synapse function.


Asunto(s)
Regulación de la Expresión Génica/genética , ARN Largo no Codificante/genética , Sinapsis/genética , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Femenino , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Embarazo , Transducción de Señal/genética , Regulación hacia Arriba/genética
4.
Neurobiol Learn Mem ; 163: 107034, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31176693

RESUMEN

While protein-coding genes have been widely studied in learning and memory, the role of the non-coding genome has only recently been investigated. With advances in high throughput sequencing technologies and functional profiling methods, multiple long noncoding RNAs (lncRNAs) have been functionally and mechanistically linked with neurobiological processes related with learning and memory, as well disorders that lead to memory impairment. However, these macromolecules are still a subject of controversy and intense scrutiny regarding the proper criteria for determining their functionality and their evolution in the central nervous system. Recent studies have implicated multiple lncRNAs as critical regulators of gene expression in the central nervous system and mediate learning processes. In this review, we explore possible explanations for how lncRNAs are evolved in our central nervous system, discuss our current understanding of their involvement in learning and memory related disorders, and describe emerging tools for studying lncRNAs.


Asunto(s)
Discapacidades para el Aprendizaje/metabolismo , Aprendizaje , Trastornos de la Memoria/metabolismo , Memoria , ARN Largo no Codificante/fisiología , Animales , Trastornos del Conocimiento/metabolismo , Humanos , ARN Largo no Codificante/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(45): 16154-9, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25352669

RESUMEN

Little is known regarding the identity of the population of proteins that are transported and localized to synapses. Here we describe a new approach that involves the isolation and systematic proteomic characterization of molecular motor kinesins to identify the populations of proteins transported to synapses. We used this approach to identify and compare proteins transported to synapses by kinesin (Kif) complexes Kif5C and Kif3A in the mouse hippocampus and prefrontal cortex. Approximately 40-50% of the protein cargos identified in our proteomics analysis of kinesin complexes are known synaptic proteins. We also found that the identity of kinesins and where they are expressed determine what proteins they transport. Our results reveal a previously unappreciated role of kinesins in regulating the composition of synaptic proteome.


Asunto(s)
Hipocampo/metabolismo , Cinesinas/metabolismo , Corteza Prefrontal/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Animales , Ratones
6.
Proc Natl Acad Sci U S A ; 110(18): 7464-9, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589870

RESUMEN

Here we describe a strategy designed to identify RNAs that are actively transported to synapses during learning. Our approach is based on the characterization of RNA transport complexes carried by molecular motor kinesin. Using this strategy in Aplysia, we have identified 5,657 unique sequences consisting of both coding and noncoding RNAs from the CNS. Several of these RNAs have key roles in the maintenance of synaptic function and growth. One of these RNAs, myosin heavy chain, is critical in presynaptic sensory neurons for the establishment of long-term facilitation, but not for its persistence.


Asunto(s)
Aplysia/genética , Perfilación de la Expresión Génica/métodos , Sinapsis/genética , Transcriptoma/genética , Animales , Sistema Nervioso Central/metabolismo , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación in Situ , Cinesinas/metabolismo , Potenciación a Largo Plazo/genética , Cadenas Pesadas de Miosina/metabolismo , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas/genética , ARN/genética , ARN/metabolismo , Transporte de ARN/genética , Análisis de Secuencia de ARN
7.
Sci Rep ; 14(1): 9622, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671060

RESUMEN

The vacuolar sorting receptors (VSRs) are specific to plants and are responsible for sorting and transporting particular proteins from the trans-Golgi network to the vacuole. This process is critically important for various cellular functions, including storing nutrients during seed development. Despite many years of intense studies on VSRs, a complete relation between function and structure has not yet been revealed. Here, we present the crystal structure of the entire luminal region of glycosylated VSR1 from Arabidopsis thaliana (AtVSR1) for the first time. The structure provides insights into the tertiary and quaternary structures of VSR1, which are composed of an N-terminal protease-associated (PA) domain, a unique central region, and one epidermal growth factor (EGF)-like domain followed by two disordered EGF-like domains. The structure of VSR1 exhibits unique characteristics, the significance of which is yet to be fully understood.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Vacuolas/metabolismo , Dominios Proteicos , Modelos Moleculares , Cristalografía por Rayos X , Transporte de Proteínas
8.
bioRxiv ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38979384

RESUMEN

The bidirectional long-distance transport of organelles is crucial for cell body-synapse communication. However, the mechanisms by which this transport is modulated for synapse formation, maintenance, and plasticity are not fully understood. Here, we demonstrate through quantitative analyses that maintaining sensory neuron-motor neuron synapses in the Aplysia gill-siphon withdrawal reflex is linked to a sustained reduction in the retrograde transport of lysosomal vesicles in sensory neurons. Interestingly, while mitochondrial transport in the anterograde direction increases within 12 hours of synapse formation, the reduction in lysosomal vesicle retrograde transport appears three days after synapse formation. Moreover, we find that formation of new synapses during learning induced by neuromodulatory neurotransmitter serotonin further reduces lysosomal vesicle transport within 24 hours, whereas mitochondrial transport increases in the anterograde direction within one hour of exposure. Pharmacological inhibition of several signaling pathways pinpoints PKA as a key regulator of retrograde transport of lysosomal vesicles during synapse maintenance. These results demonstrate that synapse formation leads to organelle-specific and direction specific enduring changes in long-distance transport, offering insights into the mechanisms underlying synapse maintenance and plasticity.

9.
Aging Cell ; : e14228, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924663

RESUMEN

The molecular mechanisms underlying age-related declines in learning and long-term memory are still not fully understood. To address this gap, our study focused on investigating the transcriptional landscape of a singularly identified motor neuron L7 in Aplysia, which is pivotal in a specific type of nonassociative learning known as sensitization of the siphon-withdraw reflex. Employing total RNAseq analysis on a single isolated L7 motor neuron after short-term or long-term sensitization (LTS) training of Aplysia at 8, 10, and 12 months (representing mature, late mature, and senescent stages), we uncovered aberrant changes in transcriptional plasticity during the aging process. Our findings specifically highlight changes in the expression of messenger RNAs (mRNAs) that encode transcription factors, translation regulators, RNA methylation participants, and contributors to cytoskeletal rearrangements during learning and long noncoding RNAs (lncRNAs). Furthermore, our comparative gene expression analysis identified distinct transcriptional alterations in two other neurons, namely the motor neuron L11 and the giant cholinergic neuron R2, whose roles in LTS are not yet fully elucidated. Taken together, our analyses underscore cell type-specific impairments in the expression of key components related to learning and memory within the transcriptome as organisms age, shedding light on the complex molecular mechanisms driving cognitive decline during aging.

10.
BMC Genomics ; 14: 880, 2013 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-24330282

RESUMEN

BACKGROUND: Despite the advances in our understanding of aging-associated behavioral decline, relatively little is known about how aging affects neural circuits that regulate specific behaviors, particularly the expression of genes in specific neural circuits during aging. We have addressed this by exploring a peptidergic neuron R15, an identified neuron of the marine snail Aplysia californica. R15 is implicated in reproduction and osmoregulation and responds to neurotransmitters such as acetylcholine, serotonin and glutamate and is characterized by its action potential bursts. RESULTS: We examined changes in gene expression in R15 neurons during aging by microarray analyses of RNAs from two different age groups, mature and old animals. Specifically we find that 1083 ESTs are differentially regulated in mature and old R15 neurons. Bioinformatics analyses of these genes have identified specific biological pathways that are up or downregulated in mature and old neurons. Comparison with human signaling networks using pathway analyses have identified three major networks [(1) cell signaling, cell morphology, and skeletal muscular system development (2) cell death and survival, cellular function maintenance and embryonic development and (3) neurological diseases, developmental and hereditary disorders] altered in old R15 neurons. Furthermore, qPCR analysis of single R15 neurons to quantify expression levels of candidate regulators involved in transcription (CREB1) and translation (S6K) showed that aging is associated with a decrease in expression of these regulators, and similar analysis in three other neurons (L7, L11 and R2) showed that gene expression change during aging could be bidirectional. CONCLUSIONS: We find that aging is associated with bidirectional changes in gene expression. Detailed bioinformatics analyses and human homolog searches have identified specific biological processes and human-relevant signaling pathways in R15 that are affected during aging. Evaluation of gene expression changes in different neurons suggests specific transcriptomic signature of single neurons during aging.


Asunto(s)
Envejecimiento , Aplysia/genética , Expresión Génica , Neuronas/metabolismo , Animales , Aplysia/fisiología , Etiquetas de Secuencia Expresada , Redes Reguladoras de Genes , Genes Reguladores , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA