Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genet Sel Evol ; 54(1): 11, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135472

RESUMEN

BACKGROUND: Disease resilience is the ability to maintain performance across environments with different disease challenge loads (CL). A reaction norm describes the phenotypes that a genotype can produce across a range of environments and can be implemented using random regression models. The objectives of this study were to: (1) develop measures of CL using growth rate and clinical disease data recorded under a natural polymicrobial disease challenge model; and (2) quantify genetic variation in disease resilience using reaction norm models. METHODS: Different CL were derived from contemporary group effect estimates for average daily gain (ADG) and clinical disease phenotypes, including medical treatment rate (TRT), mortality rate, and subjective health scores. Resulting CL were then used as environmental covariates in reaction norm analyses of ADG and TRT in the challenge nursery and finisher, and compared using model loglikelihoods and estimates of genetic variance associated with CL. Linear and cubic spline reaction norm models were compared based on goodness-of-fit and with multi-variate analyses, for which phenotypes were separated into three traits based on low, medium, or high CL. RESULTS: Based on model likelihoods and estimates of genetic variance explained by the reaction norm, the best CL for ADG in the nursery was based on early ADG in the finisher, while the CL derived from clinical disease traits across the nursery and finisher was best for ADG in the finisher and for TRT in the nursery and across the nursery and finisher. With increasing CL, estimates of heritability for nursery and finisher ADG initially decreased, then increased, while estimates for TRT generally increased with CL. Genetic correlations for ADG and TRT were low between high versus low CL, but high for close CL. Linear reaction norm models fitted the data significantly better than the standard genetic model without genetic slopes, while the cubic spline model fitted the data significantly better than the linear reaction norm model for most traits. Reaction norm models also fitted the data better than multi-variate models. CONCLUSIONS: Reaction norm models identified genotype-by-environment interactions related to disease CL. Results can be used to select more resilient animals across different levels of CL, high-performance animals at a given CL, or a combination of these.


Asunto(s)
Destete , Animales , Genotipo , Fenotipo , Porcinos/genética
2.
BMC Genomics ; 22(1): 535, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256695

RESUMEN

BACKGROUND: Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an animal's disease response. The aim was to identify the genetic control of disease resilience. RESULTS: Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood cell morphology, and platelet aggregation. CONCLUSIONS: This study helps to improve our understanding of the genetic basis of CBC traits collected before and after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Recuento de Células Sanguíneas , Genoma , Fenotipo , Sus scrofa/genética , Porcinos/genética
3.
BMC Genomics ; 22(1): 614, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384354

RESUMEN

BACKGROUND: Disease resilience, which is the ability of an animal to maintain performance under disease, is important for pigs in commercial herds, where they are exposed to various pathogens. Our objective was to investigate population-level gene expression profiles in the blood of 912 healthy F1 barrows at ~ 27 days of age for associations with performance and health before and after their exposure to a natural polymicrobial disease challenge at ~ 43 days of age. RESULTS: Most significant (q < 0.20) associations of the level of expression of individual genes in blood of young healthy pigs were identified for concurrent growth rate and subjective health scores prior to the challenge, and for mortality, a combined mortality-treatment trait, and feed conversion rate after the challenge. Gene set enrichment analyses revealed three groups of gene ontology biological process terms that were related to disease resilience: 1) immune and stress response-related terms were enriched among genes whose increased expression was unfavorably associated with both pre- and post-challenge traits, 2) heme-related terms were enriched among genes that had favorable associations with both pre- and post-challenge traits, and 3) terms related to protein localization and viral gene expression were enriched among genes that were associated with reduced performance and health traits after but not before the challenge. CONCLUSIONS: Gene expression profiles in blood from young healthy piglets provide insight into their performance when exposed to disease and other stressors. The expression of genes involved in stress response, heme metabolism, and baseline expression of host genes related to virus propagation were found to be associated with host response to disease.


Asunto(s)
Inmunidad , Transcriptoma , Animales , Ontología de Genes , Fenotipo , Porcinos
4.
BMC Genomics ; 21(1): 648, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962629

RESUMEN

BACKGROUND: Disease resilience is the ability to maintain performance under pathogen exposure but is difficult to select for because breeding populations are raised under high health. Selection for resilience requires a trait that is heritable, easy to measure on healthy animals, and genetically correlated with resilience. Natural antibodies (NAb) are important parts of the innate immune system and are found to be heritable and associated with disease susceptibility in dairy cattle and poultry. Our objective was to investigate NAb and total IgG in blood of healthy, young pigs as potential indicator traits for disease resilience. RESULTS: Data were from Yorkshire x Landrace pigs, with IgG and IgM NAb (four antigens) and total IgG measured by ELISA in blood plasma collected ~ 1 week after weaning, prior to their exposure to a natural polymicrobial challenge. Heritability estimates were lower for IgG NAb (0.12 to 0.24, + 0.05) and for total IgG (0.19 + 0.05) than for IgM NAb (0.33 to 0.53, + 0.07) but maternal effects were larger for IgG NAb (0.41 to 0.52, + 0.03) and for total IgG (0.19 + 0.05) than for IgM NAb (0.00 to 0.10, + 0.04). Phenotypically, IgM NAb titers were moderately correlated with each other (average 0.60), as were IgG NAb titers (average 0.42), but correlations between IgM and IgG NAb titers were weak (average 0.09). Phenotypic correlations of total IgG were moderate with NAb IgG (average 0.46) but weak with NAb IgM (average 0.01). Estimates of genetic correlations among NAb showed similar patterns but with small SE, with estimates averaging 0.76 among IgG NAb, 0.63 among IgM NAb, 0.17 between IgG and IgM NAb, 0.64 between total IgG and IgG NAb, and 0.13 between total IgG and IgM NAb. Phenotypically, pigs that survived had slightly higher levels of NAb and total IgG than pigs that died. Genetically, higher levels of NAb tended to be associated with greater disease resilience based on lower mortality and fewer parenteral antibiotic treatments. Genome-wide association analyses for NAb titers identified several genomic regions, with several candidate genes for immune response. CONCLUSIONS: Levels of NAb in blood of healthy young piglets are heritable and potential genetic indicators of resilience to polymicrobial disease.


Asunto(s)
Coinfección/genética , Resistencia a la Enfermedad , Inmunoglobulina G/genética , Inmunoglobulina M/genética , Enfermedades de los Porcinos/genética , Porcinos/genética , Animales , Coinfección/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Fenotipo , Carácter Cuantitativo Heredable , Porcinos/inmunología , Enfermedades de los Porcinos/inmunología
5.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638126

RESUMEN

Selection for disease resilience, which refers to the ability of an animal to maintain performance when exposed to disease, can reduce the impact of infectious diseases. However, direct selection for disease resilience is challenging because nucleus herds must maintain a high health status. A possible solution is indirect selection of indicators of disease resilience. To search for such indicators, we conducted phenotypic and genetic quantitative analyses of the abundances of 377 proteins in plasma samples from 912 young and visually healthy pigs and their relationships with performance and subsequent disease resilience after natural exposure to a polymicrobial disease challenge. Abundances of 100 proteins were significantly heritable (false discovery rate (FDR) <0.10). The abundance of some proteins was or tended to be genetically correlated (rg) with disease resilience, including complement system proteins (rg = -0.24, FDR = 0.001) and IgG heavy chain proteins (rg = -0.68, FDR = 0.22). Gene set enrichment analyses (FDR < 0.2) based on phenotypic and genetic associations of protein abundances with subsequent disease resilience revealed many pathways related to the immune system that were unfavorably associated with subsequent disease resilience, especially the innate immune system. It was not possible to determine whether the observed levels of these proteins reflected baseline levels in these young and visually healthy pigs or were the result of a response to environmental disturbances that the pigs were exposed to before sample collection. Nevertheless, results show that, under these conditions, the abundance of proteins in some immune-related pathways can be used as phenotypic and genetic predictors of disease resilience and have the potential for use in pig breeding and management.


A challenge of selection for disease resilience is that it is difficult to directly select pigs that have greater resilience to multiple diseases in the healthy nucleus herd environment which is essential for breeding programs. A possible alternative is to select an indicator trait or marker that can be measured in a healthy setting, is heritable, and is associated with the genetics of disease resilience. In this study, we investigated plasma protein levels measured on young healthy pigs as indicator traits to select for disease resilience. For this purpose, we used plasma proteome data collected prior to the natural exposure of nursery pigs to multiple diseases, performed phenotypic and genetic quantitative analyses, and investigated their relationships with disease resilience. Our results suggest that plasma protein levels of young healthy pigs have the potential as biomarkers to select for disease resistance.


Asunto(s)
Proteínas Sanguíneas , Estado de Salud , Porcinos , Animales , Fenotipo
6.
J Anim Sci ; 99(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33944943

RESUMEN

Disease resilience refers to the productivity of an animal under disease. Given the high biosecurity of pig nucleus herds, traits that can be measured on healthy pigs and that are genetically correlated with disease resilience, that is, genetic indicator traits, offer a strategy to select for disease resilience. Our objective was to evaluate mitogen stimulation assays (MSAs) on peripheral blood mononuclear cells (PBMCs) from young healthy pigs as genetic indicators for disease resilience. Data were from a natural disease challenge in which batches of 60 or 75 naïve Yorkshire × Landrace piglets were introduced every 3 wk into a continuous flow barn that was seeded with multiple diseases. In this environment, disease resilience traits, including growth, treatment, and mortality rates, were recorded on 3,136 pigs that were genotyped with a high-density marker panel. PBMCs from 882 of these pigs from 19 batches were isolated from whole blood collected prior to the disease challenge and stimulated with five mitogens: concanavalin A (ConA), phytohemagglutinin (PHA), pokeweed mitogen (PWM), lipopolysaccharide (LPS), and phorbol myristate acetate (PMA). The proliferation of cells was evaluated at 48, 72, and 96 h and compared with unstimulated samples (rest count). Heritabilities of cell proliferation were estimated using a model with batch as a fixed effect and covariates of entry age; rest count; complete blood count proportions of lymphocytes, monocytes, eosinophils, and basophils; and pen, litter, and animal genetics as random effects. Heritability estimates were highest for response to ConA (0.30 ± 0.09, 0.28 ± 0.10, 0.17 ± 0.10, and 0.25 ±0.10 at 48, 72, and 96 h after stimulation and for area under the curve across the three time points, respectively). Estimates were in a similar range for response to PHA and PMA but low for PWM and LPS. Responses to ConA, PHA, and PMA were moderately genetically correlated with several disease resilience traits and in the expected direction, but individual estimates were not significantly different from zero due to large SEs. In conclusion, although validation is needed, MSAss, in particular based on ConA, show promise as genetic indicator traits for disease resilience.


Asunto(s)
Leucocitos Mononucleares , Mitógenos , Animales , Proliferación Celular , Activación de Linfocitos , Fitohemaglutininas/farmacología , Mitógenos de Phytolacca americana , Porcinos
7.
J Anim Sci Biotechnol ; 12(1): 105, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34493327

RESUMEN

BACKGROUND: The pork industry faces unprecedented challenges from disease, which increases cost of production and use of antibiotics, and reduces production efficiency, carcass quality, and animal wellbeing. One solution is to improve the overall resilience of pigs to a broad array of common diseases through genetic selection. Behavioral changes in feeding and drinking are usually the very first clinical signs when animals are exposed to stressors such as disease. Changes in feeding and drinking behaviors in diseased pigs may reflect the way they cope with the challenge and, thus, could be used as indicator traits to select for disease resilience. The objectives of this study were to estimate genetic parameters of feeding and drinking traits for wean-to-finish pigs in a natural polymicrobial disease challenge model, to estimate genetic correlations of feeding and drinking traits with growth rate and clinical disease traits, and to develop indicator traits to select for disease resilience. RESULTS: In general, drinking traits had moderate to high estimates of heritability, especially average daily water dispensed, duration, and number of visits (0.44 to 0.58). Similar estimates were observed for corresponding feeding traits (0.35 to 0.51). Most genetic correlation estimates among drinking traits were moderate to high (0.30 to 0.92) and higher than among feeding traits (0 to 0.11). Compared to other drinking traits, water intake duration and number of visits had relatively stronger negative genetic correlation estimates with treatment rate and mortality, especially across the challenge nursery and finisher (- 0.39 and - 0.45 for treatment rate; - 0.20 and - 0.19 for mortality). CONCLUSION: Most of the recorded drinking and feeding traits under a severe disease challenge had moderate to high estimates of heritability, especially for feed or water intake duration and number of visits. Phenotypic and genetic correlations among the recorded feeding traits under disease were generally low but drinking traits showed high correlations with each other. Water intake duration and number of visits are potential indicator traits to select for disease resilience because of their high heritability and had moderate genetic correlations with treatment and mortality rates under severe disease.

8.
J Anim Sci ; 98(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32730570

RESUMEN

The objective was to estimate the genetic parameters of performance and resilience of growing pigs under disease. Data were from 3,139 Yorkshire × Landrace wean-to-finish pigs that were exposed to a natural polymicrobial disease challenge that was established by entering naturally infected animals into a nursery barn, targeting various viral and bacterial diseases. The challenge was maintained by entering batches of 60 or 75 healthy nursery pigs every 3 wk in a continuous flow system. Traits analyzed included average daily gain (ADG), feed intake (ADFI) and duration (ADFD); feed conversion ratio (FCR); residual feed intake (RFI); mortality (MOR); number of health treatments (TRT); health scores (HScore); carcass weight (CWT), back fat (CBF) and loin depth (CLD); dressing percentage (DRS); lean yield (LYLD); day-to-day variation in feed intake and duration (VARFI and VARDUR); and the proportion of off-feed days (OFFFI and OFFDUR). Analyses were performed by mixed linear models with genomic relationships. The resilience traits, such as TRT, MOR, and HScore, were lowly heritable (up to 0.15) but had high genetic correlations with each other. Performance traits, such as ADG, ADFI, ADFD, FCR, RFI, and carcass traits, were moderate to highly heritable (0.17 to 0.49). Heritabilities of resilience indicator traits such as OFF and VAR had low to moderate heritabilities (0.08 to 0.23) but were higher when based on duration vs. amount. ADFI had a low genetic correlation with ADFD (0.13). ADG in the challenge nursery had stronger negative genetic correlations with both TRT and MOR than ADG in the finisher (-0.37 to -0.74 vs. -0.15 to -0.56). ADFI and FCR had moderate negative (-0.21 to -0.39) and positive (0.34 to 0.49) genetic correlations, respectively, with TRT and MOR. ADFD and RFI had very low genetic correlations with TRT and MOR. CWT and DRS were moderately negatively correlated with TRT and MOR (-0.33 to -0.59). Resilience indicator traits based on feed intake or duration had moderate to high positive genetic correlations with TRT (0.18 to 0.81) and MOR (0.33 to 0.87). In conclusion, performance and resilience traits under a polymicrobial disease challenge are heritable and can be changed by selection. Phenotypes extracted from feed intake patterns can be used as genetic indicator traits for disease resilience. Most promising is day-to-day variation in intake duration, which had a sizeable heritability (0.23) and favorable genetic correlations with MOR (0.79) and treatment rate (0.20).


Asunto(s)
Resistencia a la Enfermedad/genética , Genómica , Enfermedades de los Porcinos/inmunología , Animales , Conducta Alimentaria , Genotipo , Masculino , Fenotipo , Porcinos , Destete
9.
Front Genet ; 11: 216, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231686

RESUMEN

Disease resilience is a valuable trait to help manage infectious diseases in livestock. It is anticipated that improved disease resilience will sustainably increase production efficiency, as resilient animals maintain their performance in the face of infection. The objective of this study was to identify phenotypes related to disease resilience using complete blood count (CBC) data from a wean-to-finish natural disease challenge model, established to mimic the disease pressure caused by many common pathogens at the commercial level of pig production. In total, 2433 F1 crossbred (Landrace × Yorkshire) barrows that went through the natural disease challenge model were classified into four groups (resilient, average, susceptible, and dead) based on their divergent responses in terms of growth and individual treatment. Three sets of blood samples for CBC analysis were drawn at 2-weeks before, and at 2- and 6-weeks after the challenge: Blood 1, Blood 3, and Blood 4 respectively. CBC of Blood 1 taken from healthy pigs before challenge did not show differences between groups. However, resilient animals were found to be primed to initiate a faster adaptive immune response and recover earlier following infection, with greater increases of lymphocyte concentration from Blood 1 to Blood 3 and for hemoglobin concentration and hematocrit from Blood 3 to Blood 4, but a lower neutrophil concentration from Blood 3 to Blood 4 than in susceptible and dead animals (FDR < 0.05). The CBC traits in response to the challenge were found to be heritable and genetically correlated with growth and treatment, which may indicate the potential for developing CBC under disease or commercial conditions as a phenotype in commercial systems as part of developing predictions for disease resilience.

10.
J Anim Sci Biotechnol ; 10: 22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867904

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most infectious swine diseases in the world, resulting in over 600 million dollars of economic loss in the USA alone. More recently, the USA swine industry has been having additional major economic losses due to the spread of porcine epidemic diarrhea (PED). However, information regarding the amount of genetic variation for response to diseases in reproductive sows is still very limited. The objectives of this study were to identify periods of infection with of PRRS virus (PRRSV) and/or PED virus (PEDV), and to estimate the impact their impact on the phenotypic and genetic reproductive performance of commercial sows. RESULTS: Disease (PRRS or PED) was significant (P < 0.05) for all traits analyzed except for total piglets born. Heritability estimates for traits during Clean (without any disease), PRRS, and PED ranged from 0.01 (number of mummies; Clean and PED) to 0.41 (abortion; PED). Genetic correlations between traits within disease statuses ranged from -0.99 (proportion born dead with number weaned; PRRS) to 0.99 (number born dead with born alive; Clean). Within trait, between disease statuses, estimates ranged from - 0.17 (number weaned between PRRS and PED) to 0.99 (abortion between Clean and PRRS). CONCLUSION: Results indicate that selection for improved performance during PRRS and PED in commercial sows is possible and would not negatively impact performance in Clean environments.

11.
Sci Rep ; 9(1): 19658, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873189

RESUMEN

In dairy cows, the period from the end of lactation through the dry period and into the transition period, requires vast physiological and immunological changes critical to mammary health. The dry period is important to the success of the next lactation and intramammary infections during the dry period will adversely alter mammary function, health and milk production for the subsequent lactation. MicroRNAs (miRNAs) are small non-coding RNAs that can post transcriptionally regulate gene expression. We sought to characterize the miRNA profile in dry secretions from the last day of lactation to 3, 10, and 21 days post dry-off. We identified 816 known and 80 novel miRNAs. We found 46 miRNAs whose expression significantly changed (q-value < 0.05) over the first three weeks of dry-off. Additionally, we examined the slopes of random regression models of log transformed normalized counts and cross analyzed the 46 significantly upregulated and downregulated miRNAs. These miRNAs were found to be associated with important components of pregnancy, lactation, as well as inflammation and disease. Detailing the miRNA profile of dry secretions through the dry-off period provides insight into the biology at work, possible means of regulation, components of resistance and/or susceptibility, and outlets for targeted therapy development.


Asunto(s)
Lactancia/fisiología , MicroARNs/biosíntesis , Animales , Bovinos , Femenino , Glándulas Mamarias Animales
12.
J Anim Sci ; 97(3): 1101-1116, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590720

RESUMEN

The objective of this study was to estimate genetic parameters of antibody response and reproductive traits after exposure to porcine reproductive and respiratory syndrome virus. Blood samples were taken approximately 60 d after the outbreak. Antibody levels were quantified as the sample-to-positive ratio (S/P ratio) using a fluorescent microsphere assay. Reproductive traits included total number born (TNB), number born alive (NBA), number stillborn (NSB), number mummified (NBM), and number born dead (NBD). Mortality traits were log transformed for genetic analyses. Data were split into prior, during, and after the disease outbreak phases using visual appraisal of the estimates of farm-year-week effects for each reproductive trait. For NBA, data from all phases were combined into a reaction norm analysis with regression on estimates of farm-year-week effects for NBA. Heritability for S/P ratio was estimated at 0.17 ± 0.05. Heritability estimates for reproduction traits were all low and were lower during the outbreak for NBA but greater for mortality traits. TNB was not greatly affected during the outbreak, as many sows that farrowed during the outbreak were mated prior to the outbreak. Heritability for TNB decreased from 0.13 (prior) to 0.08 (after). Genetic correlation estimates between prior to and during the outbreak were high for TNB (0.86 ± 0.23) and NBA (0.98 ± 0.38) but lower for mortality traits: 0.65 ± 0.43, -0.42 ± 0.55, and 0.29 ± 1.39 for LNSB, LNBM, and LNBD, respectively. TNB prior to and after the outbreak had a lower genetic correlation (0.32 ± 0.33). In general, genetic correlation estimates of S/P ratio with reproductive performance during the outbreak were below 0.20 in absolute value, except for LNSB (-0.73 ± 0.29). Based on the reaction norm model, estimates of genetic correlations between the intercept and slope terms ranged from 0.24 ± 0.50 to 0.54 ± 0.35 depending on the parameterization used, indicating that selection for the intercept may result in indirect selection for steeper slopes, and thus, less resilient animals. In general, estimates of genetic correlations between farm-year-week effect classes based on the reaction norm model resembled estimates of genetic correlations from the multivariate analysis. Overall, compared to previous studies, antibody S/P ratios showed a lower heritability (0.17 ± 0.05) and low genetic correlations with reproductive performance during a porcine reproductive and respiratory syndrome outbreak, except for the LNSB.


Asunto(s)
Brotes de Enfermedades/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Reproducción/genética , Enfermedades de los Porcinos/epidemiología , Animales , Formación de Anticuerpos/genética , Femenino , Tamaño de la Camada , Parto/genética , Fenotipo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Embarazo , Mortinato/veterinaria , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología
13.
Front Genet ; 9: 660, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30671080

RESUMEN

The objective of this study was to extract novel phenotypes related to disease resilience using daily feed intake data from growing pigs under a multifactorial natural disease challenge that was designed to mimic a commercial environment with high disease pressure to maximize expression of resilience. Data used were the first 1,341 crossbred wean-to-finish pigs from a research facility in Québec, Canada. The natural challenge was established under careful veterinary oversight by seeding the facility with diseased pigs from local health-challenged farms, targeting various viral and bacterial diseases, and maintaining disease pressure by entering batches of 60-75 pigs in a continuous flow system. Feed intake (FI) is sensitive to disease, as pigs tend to eat less when they become ill. Four phenotypes were extracted from the individual daily FI data during finishing as novel measures of resilience. The first two were daily variability in FI or FI duration, quantified by the root mean square error (RMSE) from the within individual regressions of FI or duration at the feeder (DUR) on age (RMSEFI and RMSEDUR). The other two were the proportion of off-feed days, classified based on negative residuals from a 5% quantile regression (QR) of daily feed intake or duration data on age across all pigs (QRFI and QRDUR). Mortality and treatment rate had a heritability of 0.13 (±0.05) and 0.29 (±0.07), respectively. Heritability estimates for RMSEFI, RMSEDUR, QRFI, and QRDUR were 0.21 (±0.07) 0.26 (±0.07), 0.15 (±0.06), and 0.23 (±0.07), respectively. Genetic correlations of RMSE and QR measures with mortality and treatment rate ranged from 0.37 to 0.85, with QR measures having stronger correlations with both. Estimates of genetic correlations of RMSE measures with production traits were typically low, but often favorable (e.g., -0.31 between RMSEFI and finishing ADG). Although disease resilience was our target, fluctuations in FI and duration can be caused by many factors other than disease and should be viewed as overall indicators of general resilience to a variety of stressors. In conclusion, daily variation in FI or duration at the feeder can be used as heritable measures of resilience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA