Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 399(1): 112397, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338477

RESUMEN

Ovarian metastases exfoliate from the primary tumor and it is thought that aggregation supports their survival in the peritoneal cavity during dissemination but the underlying mechanisms are not clearly identified. We have previously shown that ovarian cancer cells acquire an increasingly glycolytic and metabolic flexible phenotype during progression. In the present study, we investigated how hypoxia, aggregation, and the incorporation of the obese stromal vascular fraction (SVF) affect cellular metabolism and the response to common anti-cancer and anti-diabetic drugs. Our results show a reduction of glucose uptake, lactate secretion, cellular respiration and ATP synthesis in response to hypoxia and aggregation, suggesting that the observed reduced proliferation of cells aggregated into spheroids is the result of a down-regulation of respiration. Recruitment of SVF to spheroids increased the spheroids invasive capacity but reduced respiration only in the most aggressive cells. Further, aggregation and hypoxia reduced the response to the metabolic drugs AICAR and metformin, and the chemotherapeutic agents cisplatin and paclitaxel. Our results suggest that the adaptation of cellular metabolism may contribute to enhanced survival under non-permissive conditions, and that these metabolic alterations may provide targets for future interventions that aim to enhance the survival of women with metastatic ovarian cancer.


Asunto(s)
Carcinoma Epitelial de Ovario/patología , Obesidad/metabolismo , Neoplasias Ováricas/patología , Esferoides Celulares/metabolismo , Hipoxia Tumoral/fisiología , Adaptación Fisiológica/fisiología , Animales , Carcinoma Epitelial de Ovario/complicaciones , Carcinoma Epitelial de Ovario/metabolismo , Agregación Celular , Respiración de la Célula/fisiología , Supervivencia Celular , Células Cultivadas , Femenino , Glucólisis/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Obesidad/complicaciones , Obesidad/patología , Neoplasias Ováricas/complicaciones , Neoplasias Ováricas/metabolismo , Esferoides Celulares/patología , Células del Estroma/metabolismo , Células del Estroma/patología , Microambiente Tumoral/fisiología
2.
Biomicrofluidics ; 15(4): 044103, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34504636

RESUMEN

The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce controlled flow to an in vitro cancer model to better understand the relationship between flow and metastasis. Here, we report new hybrid spheroid-on-chip in vitro models for the impact of interstitial fluid flow on cancer spread. We designed a series of reusable glass microfluidic devices to contain one spheroid in a microwell under continuous perfusion culture. Spheroids derived from established cancer cell lines were perfused with complete media at a flow rate relevant to tumor interstitial fluid flow. Spheroid viability and migratory/invasive capabilities were maintained on-chip when compared to off-chip static conditions. Importantly, using flow conditions modeled in vitro, we are the first to report flow-induced secretion of pro-metastatic factors, in this case cytokines vascular endothelial growth factor and interleukin 6. In summary, we have developed a new, streamlined spheroid-on-chip in vitro model that represents a feasible in vitro alternative to conventional murine in vivo metastasis assays, including complex tumor environmental factors, such as interstitial fluid flow, extracellular matrices, and using 3D models to model nutrient and oxygen gradients. Our device, therefore, constitutes a robust alternative to in vivo early-metastasis models for determination of novel metastasis biomarkers as well as evaluation of therapeutically relevant molecular targets not possible in in vivo murine models.

3.
Br J Radiol ; 94(1119): 20201191, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33434085

RESUMEN

OBJECTIVE: Neoadjuvant chemoradiotherapy (neo-CRT) prior to surgery is the standard of care for oesophageal adenocarcinoma (OAC) patients. Unfortunately, most patients fail to respond to treatment. MiR-187 was previously shown to be downregulated in neo-CRT non-responders, whist in vitro miR-187 overexpression enhanced radiosensitivity and upregulated PTEN. This study evaluates the role of miR-187 and downstream PI3K signalling in radiation response in OAC. METHODS: The effect of miR-187 overexpression on downstream PI3K signalling was evaluated in OAC cell lines by qPCR and Western blotting. PTEN expression was analysed in OAC pre-treatment biopsies of neo-CRT responders and non-responders. Pharmacological inhibition of PI3K using GDC-0941 was evaluated in combination with radiotherapy in two-dimensional and three-dimensional OAC models in vitro and as a single agent in vivo. Radiation response in vitro was assessed via clonogenic assay. RESULTS: PTEN expression was significantly decreased in neo-CRT non-responders. MiR-187 overexpression significantly upregulated PTEN expression and inhibited downstream PI3K signalling in vitro. GDC-0941 significantly reduced viability and enhanced radiation response in vitro and led to tumour growth inhibition as a single agent in vivo. CONCLUSION: Targeting of PI3K signalling is a promising therapeutic strategy for OAC patients who have repressed miR-187 expression and do not respond to conventional neo-CRT. ADVANCES IN KNOWLEDGE: This is the first study evaluating the effect of PI3K inhibition on radiosensitivity in OAC, with a particular focus on patients that do not respond to neo-CRT. We have shown for the first time that targeting of PI3K signalling is a promising alternative therapeutic strategy for OAC patients who do not respond to conventional neo-CRT.


Asunto(s)
Adenocarcinoma/terapia , Neoplasias Esofágicas/terapia , Terapia Neoadyuvante , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Femenino , Humanos , Ratones , Resultado del Tratamiento
4.
J Vis Exp ; (105)2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26650566

RESUMEN

Dysfunctional skeletal muscle mitochondria play a role in altered metabolism observed with aging, obesity and Type II diabetes. Mitochondrial respirometric assays from isolated mitochondrial preparations allow for the assessment of mitochondrial function, as well as determination of the mechanism(s) of action of drugs and proteins that modulate metabolism. Current isolation procedures often require large quantities of tissue to yield high quality mitochondria necessary for respirometric assays. The methods presented herein describe how high quality purified mitochondria (~ 450 µg) can be isolated from minimal quantities (~75-100 mg) of mouse skeletal muscle for use in high throughput respiratory measurements. We determined that our isolation method yields 92.5± 2.0% intact mitochondria by measuring citrate synthase activity spectrophotometrically. In addition, Western blot analysis in isolated mitochondria resulted in the faint expression of the cytosolic protein, GAPDH, and the robust expression of the mitochondrial protein, COXIV. The absence of a prominent GAPDH band in the isolated mitochondria is indicative of little contamination from non-mitochondrial sources during the isolation procedure. Most importantly, the measurement of O2 consumption rate with micro-plate based technology and determining the respiratory control ratio (RCR) for coupled respirometric assays shows highly coupled (RCR; >6 for all assays) and functional mitochondria. In conclusion, the addition of a separate mincing step and significantly reducing motor driven homogenization speed of a previously reported method has allowed the isolation of high quality and purified mitochondria from smaller quantities of mouse skeletal muscle that results in highly coupled mitochondria that respire with high function during microplate based respirometirc assays.

5.
J Vis Exp ; (105): e53216, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26555567

RESUMEN

Skeletal muscle mitochondria play a specific role in many disease pathologies. As such, the measurement of oxygen consumption as an indicator of mitochondrial function in this tissue has become more prevalent. Although many technologies and assays exist that measure mitochondrial respiratory pathways in a variety of cells, tissue and species, there is currently a void in the literature in regards to the compilation of these assays using isolated mitochondria from mouse skeletal muscle for use in microplate based technologies. Importantly, the use of microplate based respirometric assays is growing among mitochondrial biologists as it allows for high throughput measurements using minimal quantities of isolated mitochondria. Therefore, a collection of microplate based respirometric assays were developed that are able to assess mechanistic changes/adaptations in oxygen consumption in a commonly used animal model. The methods presented herein provide step-by-step instructions to perform these assays with an optimal amount of mitochondrial protein and reagents, and high precision as evidenced by the minimal variance across the dynamic range of each assay.


Asunto(s)
Mitocondrias Musculares/metabolismo , Músculo Esquelético/ultraestructura , Consumo de Oxígeno/fisiología , Animales , Transporte de Electrón , Ratones , Modelos Animales , Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA